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Abstract

Let F denote a non-archimedean local field of characteristic zero
with odd residual characteristic and let S̃p(n) denote the rank n meta-
plectic group over F . If r±(σ) denotes the first occurrence index of

the irreducible genuine representation σ of S̃p(n) in the theta corre-

spondence for the dual pair (S̃p(n), O(V ±)), the conservation relation,
conjectured by Kudla and Rallis, states that r+(σ) + r−(σ) = 2n. A
purpose of this paper is to prove this conjecture for discrete series
which appear as subquotients of generalized principle series where the
representation on the metaplectic part is strongly positive. Assuming
the basic assumption, we also prove the conservation relation for gen-
eral discrete series of metaplectic groups by explicitly determining the
first occurrence indices.

1 Introduction

This paper is concerned with the determination of the first occurrence indices
for certain classes of irreducible genuine representations of metaplectic groups
in the local theta correspondence. It presents a continuation of our previ-
ous work [10, 9, 11] on the strongly positive representations of metaplectic
groups, which serve as a cornerstone in the known constructions of discrete
series. Our approach was motivated by the paper of Muić ([16]), who used
an inductive procedure to determine the first occurrence indices for discrete
series of symplectic groups, i.e., for the reductive dual pair (Sp(n), O(V ±)).
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His work is based on the classification of discrete series for classical p-adic
groups given by the work of Mœglin and Tadić ([12, 13]).

Although very elegant, the Mœglin-Tadić classification relies on a certain
conjecture, called the basic assumption, which will be recalled in Section 6.
It is important to note that Arthur has recently announced a proof of his
conjectures about the stable transfer coming from the twisted endoscopy,
which should imply the basic assumption. We have recently classified the
strongly positive discrete series of metaplectic groups in a purely algebraic
way and this classification, given in [9], is also valid in a classical group case.
For that reason we start our inspection of the first occurrence indices building
inductively from the strongly positive discrete series.

To a fixed quadratic character χ of F×, where F denotes a non-archimedean
local field, one can attach two odd orthogonal towers, obtained by adding
hyperbolic planes to an anisotropic quadratic space V0 over F of odd dimen-
sion. These towers are commonly denoted by +–tower (if the space V0 is
1-dimensional) and −–tower (if the space V0 is 3-dimensional), while the cor-
responding orthogonal groups of the spaces obtained by adding r hyperbolic
planes to the space V0 are denoted by O(V +

r ) and O(V −
r ).

The first occurrence index r±(σ) is the smallest non-negative integer r for

which the irreducible genuine representation σ of the metaplectic group S̃p(n)

occurs in the local theta correspondence for the dual pair (S̃p(n), O(V ±
r )).

In their paper [8], Kudla and Rallis posed a very interesting conjecture
which states that the equality r+(σ) + r−(σ) = 2n holds for an irreducible

admissible genuine representation of S̃p(n). They proved this conjecture,
known as the conservation relation, in a good deal of cases, in particular,
for supercuspidal representations. We prove their conjecture for many other
representations of metaplectic groups over non-archimedean local fields of
characteristic zero with odd residual characteristic, explicitly determining
the first occurrence indices.

Recently, B. Sun and C.B. Zhu have announced a proof of the conservation
relation in full generality [20]. Their approach uses entirely different methods.

The first purpose of this paper is to sharpen the results from [11], where
the lower first occurrence indices of strongly positive discrete series have been
determined in an essentially combinatorial way. Using the inductive method
introduced by Muić, we obtain explicit expressions for the first occurrence
indices of strongly positive representations in terms of those of their partial
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cuspidal supports. The conservation relation for strongly positive discrete
series is then a direct consequence of the results of Kudla and Rallis.

Secondly, we study the first occurrence indices of irreducible subquotients
of the induced representation of the form

δ([νaχV,ψρ, χV,ψν
bρ]) o σsp

where the representation σsp is strongly positive (the notation is explained in
more detail in Section 2). Non-strongly positive discrete series subquotients
of the aforementioned representation are of special importance because they
present the first inductive step in the construction of general discrete series
representations. Composition series of induced representations of this type
have been described in [15], but since we, actually, only need appropriate
embeddings of irreducible subquotients, we obtain such embeddings inde-
pendently. For certain classes of representations this can be achieved using
the arguments based on the Jacquet modules method ([21]) and Bernstein-
Zelevinsky theory ([2, 23]), which have been extended to the metaplectic case
in [4].

However, this techniques happen to be insufficient in many cases of dis-
crete series. Appropriate embeddings of such representations have been con-
structed in the classical group case in [12] and rely on the theory of L-
functions, which we do not have at the disposal in its full generality. Instead
of extending this theory to the metaplectic case, we use recent results of Gan
and Savin ([3]) which provide a correspondence between discrete series of
metaplectic groups and those of the orthogonal ones, given by the theta cor-
respondence. This puts us in position to use ideas from [12] to first obtain the
appropriate embeddings on the classical group side and then transfer them
to the metaplectic group side using simple inductive arguments. Combining
the embeddings of discrete series of metaplectic groups obtained in that way
with the description of theta lifts of strongly positive discrete series, we de-
termine the first occurrence indices using case-by-case consideration together
with the same inductive method as for the strongly positive representations.

The full strength of this approach is presented in the determination of the
first occurrence indices of the general discrete series of metaplectic groups,
under the natural hypotheses. We start with the Mœglin-Tadić classification
for the orthogonal groups and again use the correspondence proved by Gan
and Savin to get appropriate embeddings of discrete series of metaplectic
groups. This reduces the determination of the first occurrence indices of
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general discrete series to rather easy inductive argument which relates them
to the already obtained first occurrence indices of discrete series subquotients
of generalized principle series. Examining several possibilities we directly
verify the conservation relation for discrete series. We choose to start our
inductive determination of the first occurrence indices from discrete series
subquotients of generalized principle series rather then from the strongly
positive discrete series because the first case consists of several subcases and
each of them has to be treated in a different way. On the other hand, after
such inductive bases has been settled the inductive step can be handled in a
fairly uniform way.

Since we do not use the Mœglin-Tadić classification in its full generality,
the precise definition of Jordan triples is not recalled in the paper. We rather
state only the main properties of embeddings of discrete series given in this
classification, that turns out to be more convenient for our purposes.

However, our method of determining the first occurrence indices does not
work for all irreducible subquotients of generalized principle series, since in
some cases we are not able to use our basic principle for pushing down the
lifts, given by Lemma 3.4.

Now we briefly describe the contents of the paper. The next section re-
views notation and some background results. In the third section we recall
some of the standard facts on the theta correspondence and state main tech-
niques for determining the first occurrence indices. Section 4 studies the
first occurrence indices of strongly positive discrete series, while the more
difficult case of discrete series which are not strongly positive and appear
as subquotients of the generalized discrete series (where the representation
on the metaplectic part is strongly positive) is discussed in Section 5. The
purpose of the sixth section is to prove the conservation relation for general
discrete series, starting from the Mœglin-Tadić classification and following
the ideas introduced in the previous two sections.

The author wishes to express his thanks to Goran Muić for drawing the
author’s attention to the results of Gan and Savin ([3]) and to the recent
work of Arthur ([1]). The author’s thanks also go to Marko Tadić for useful
discussions on the discrete series of the odd-orthogonal groups. The author
would also like to thank the referee for helping to greatly improve the style
of the presentation. The author lectured on results of the present paper in
the workshop ”Automorphic forms: Arithmetic and Geometry” held at the
Erwin Schrödinger Institute in Vienna in January and February of 2012. The
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author is thankful to the Institute and J. Schwermer for their hospitality.

2 Preliminaries

Through this paper F denotes a non-archimedean local field of characteristic
zero with odd residual characteristic.

First we discuss the groups that are the object of our study.

Let S̃p(n) be the metaplectic group of rank n, the unique non-trivial
two-fold central extension of symplectic group Sp(n, F ). In other words, the
following holds:

1 → µ2 → S̃p(n) → Sp(n, F ) → 1,

where µ2 = {1,−1}. The multiplication in S̃p(n) is given by the Rao’s
cocycle ([18]). The more thorough description of the structural theory of
metaplectic groups can be found in [4], [7] and [18].

In this paper we are interested only in genuine representations of S̃p(n)

(i.e., those which do not factor through µ2). So, let Irr(S̃p(n)) stand for the
set of isomorphism classes of irreducible admissible genuine representations

of group S̃p(n). Further, let S( ˜Sp(n, F )) denote the Grothendieck group of

the category of all admissible genuine representations of finite length of S̃p(n)
(i.e., a free abelian group over the set of all irreducible genuine representations

of S̃p(n)) and define S =
⊕

n≥0 S( ˜Sp(n, F )).

Let V0 be an anisotropic quadratic space over F of odd dimension. Then
its dimension can only be 1 or 3. For more details about the invariants of this
space, such as the quadratic character χV0 related to the quadratic form on
V0, we refer the reader to [6] and [8]. In each step we add a hyperbolic plane
and obtain an enlarged quadratic space, a tower of quadratic spaces and a
tower of corresponding orthogonal groups. In the case when r hyperbolic
planes are added to the anisotropic space, enlarged quadratic space will be
denoted by Vr, while a corresponding orthogonal group will be denoted by
O(Vr). Set mr = 1

2
dimVr.

To a fixed quadratic character χV0 one can attach two odd orthogonal
towers, one with dimV0 = 1 (+–tower) and the other with dimV0 = 3 (−–
tower), as in Chapter V of [7]. In that case, for corresponding orthogonal
groups of the spaces obtained by adding r hyperbolic planes we write O(V +

r )
and O(V −

r ).
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Similarly as before, let Irr(O(Vr)) denote the set of isomorphism classes
of irreducible admissible representations of the orthogonal group O(Vr).

The pair (Sp(n), O(Vr)) is a reductive dual pair in Sp(n · dimVr). Since
the dimension of the space Vr is odd, the group Sp(n) does not split in

˜Sp(n · dimVr), so the theta correspondence relates the representations of the

metaplectic group S̃p(n) and those of the orthogonal group O(Vr). For ab-
breviation, we write n1 instead of n · dimVr. We fix a non-trivial additive
character ψ of F and let ωn,r stand for the pull-back of the Weil representa-

tion ωn1,ψ of the group S̃p(n1), restricted to the dual pair S̃p(n)×O(Vr) (as
in [7], Chapter II).

Let ˜GL(n, F ) denote a double cover of GL(n, F ), where the multiplication
is given by (g1, ε1)(g2, ε2) = (g1g2, ε1ε2(detg1, detg2)F ). Here εi ∈ µ2, i = 1, 2
and (·, ·)F denotes the Hilbert symbol of field F .

We fix a character χV,ψ of ˜GL(n, F ) given by χV,ψ(g, ε) = χV (detg)εγ(detg, 1
2
ψ)−1.

Here γ denotes the Weil index ([7], p. 13), while χV is a character related to
the orthogonal tower. We write α = χ2

V,ψ and observe that α is a quadratic
character on GL(n, F ).

Let us define Rgen = ⊕nR( ˜GL(n, F ))gen, where R( ˜GL(n, F ))gen denotes
the Grothendieck group of the category of all admissible genuine representa-

tions of finite length of ˜GL(n, F ).
From now on, ν stands for the character of GL(n, F ) defined by |det|F .
If ρ is an irreducible cuspidal representation ofGL(nρ, F ) (this defines nρ),

or such genuine representation of ˜GL(nρ, F ), we call the set ∆ = {νaρ, νa+1ρ, . . . ,
νa+kρ} a segment, where a ∈ R and k ∈ Z≥0. In the sequel, we abbreviate
{νaρ, νa+1ρ, . . . , νa+kρ} to [νaρ, νa+kρ]. We denote by δ(∆) the unique irre-
ducible subrepresentation of νa+kρ×νa+k−1ρ×· · ·×νaρ. δ(∆) is an essentially
square-integrable representation attached to the segment ∆. If ρ is a genuine
representation, then so is δ(∆) (by [4], Proposition 4.2).

To simplify notation, we write νx (respectively, νxχV,ψ) instead of νx1F×
(respectively, νxχV,ψ1F×), where 1F× stands for the trivial representation of
the group F×.

For an ordered partition s = (n1, n2, . . . , ni) of some m ≤ n, we denote
by Ps a standard parabolic subgroup of Sp(n, F ) (consisting of block upper-
triangular matrices), whose Levi subgroup equals GL(n1, F )×GL(n2, F )×
· · · × GL(ni, F ) × Sp(n −m,F ). Then the standard parabolic subgroup P̃s
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of S̃p(n) is the preimage of Ps in S̃p(n). There is an analogous notation for
the Levi subgroups of metaplectic groups, described in more detail in [4],

Section 2.2. The representation of S̃p(n) that is parabolically induced from

the representation π1 ⊗ π2 ⊗ · · · ⊗ πi ⊗ σ of the Levi subgroup of P̃s will be
denoted by π1 × π2 × · · · × πi o σ. The standard parabolic subgroups (those
containing the upper triangular Borel subgroup) of O(Vr) have an analogous
description as the standard parabolic subgroups of Sp(n, F ). If s = (k), for

some 0 ≤ k ≤ n, we denote Ps (resp., P̃s) briefly by Pk (resp., P̃k). The

normalized Jacquet module of a smooth representation σ of S̃p(n) (resp., of

O(Vr)) with respect to the standard parabolic subgroup P̃s(resp., Ps) will be
denoted by R

fPs
(σ) (resp., RPs(σ)). For an irreducible cuspidal representation

ρ of ˜GL(nρ, F ) (resp., GL(nρ, F )), we write R
ePnρ

(σ)(ρ) (resp., RPnρ
(σ)(ρ))

for the maximal ρ–isotypic quotient of R
ePnρ

(σ) (resp., of RPnρ
(σ)).

When dealing with the Jacquet modules of the representation ωn,r, we
write R

fP1
(ωn,r) (resp., RP1(ωn,r)) for R

fP1×O(Vm)(ωn,r) (resp., R
S̃p(n)×P1

(ωn,r)),

following the notation introduced in [5].

An irreducible representation σ ∈ S is called strongly positive if for every
embedding

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk o σcusp,

where ρi ∈ Rgen, i = 1, 2, . . . , k, are irreducible cuspidal unitary representa-
tions and σcusp ∈ S is an irreducible cuspidal representation, we have si > 0
for each i.

Irreducible strongly positive representations are called strongly positive
discrete series. Strongly positive discrete series of classical groups are defined
in the completely analogous way. Note that every supercuspidal representa-
tion is strongly positive.

Non-supercuspidal strongly positive discrete series of metaplectic groups
have been classified in [9]. In the following theorem we recall an inductive
description of such representations. We remark that an analogous description
holds in the classical group case.

Theorem 2.1. Let σ ∈ Irr(S̃p(n)) denote a non-supercuspidal strongly pos-

itive discrete series and let ρ ∈ Irr( ˜Gl(nρ, F )) be a cuspidal representation
such that some twist of ρ appears in the cuspidal support of σ. Also, let σcusp
denote a partial cuspidal support of σ and let s > 0 denote the point of rank
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one reducibility. Then there exist unique a, b ∈ R, a > 0, b > 0, b− a ∈ Z≥0,
and a unique strongly positive discrete series τ such that σ can be character-
ized as the unique irreducible subrepresentation of δ([νaρ, νbρ]) o τ . Also, a
and b are both strictly smaller with respect to those used to construct τ and
there is a non–negative integer k such that a + k = s. If k > 0, then there
exist a unique b′ > b and a unique strongly positive discrete series τ ′ such
that τ is the unique irreducible subrepresentation of δ([νa+1ρ, νb

′
ρ]) o τ ′. If

k = 0 then there are no twists of representation ρ appearing in the cuspidal
support of τ .

Moreover, if τ1 is an irreducible representation such that δ([νaρ, νbρ]) ⊗
τ1 is contained in the Jacquet module of σ with respect to the appropriate
parabolic subgroup, then τ1 ∼= τ . The representation δ([νaρ, νbρ]) ⊗ τ ap-
pears with the multiplicity one in the Jacquet module of σ with respect to the
appropriate parabolic subgroup.

In the rest of this section we recall some results related to calculations
with Jacquet modules. Let σ denote an irreducible genuine representation

of S̃p(n). Then R
ePk

(σ), for 0 ≤ k ≤ n, can be interpreted as a genuine

representation of ˜GL(k, F )× ˜Sp(n− k), i.e., is an element of Rgen ⊗ S. For
such σ we can introduce µ∗(σ) ∈ Rgen ⊗ S by

µ∗(σ) =
n∑
k=0

s.s.(R
ePk

(σ))

(s.s. denotes the semisimplification) and extend µ∗ linearly to the whole of S.
In the same way µ∗ can be defined for irreducible representations of classical
groups.

The basic result of the paper [4] is the following metaplectic version of
structure formula due to Tadić in the classical group case ([21]).

Lemma 2.2. Let ρ ∈ Rgen be an irreducible cuspidal representation and
a, b ∈ R such that a+b ∈ Z≥0. Let σ be an admissible genuine representation

of finite length of S̃p(n). Write µ∗(σ) =
∑

π,σ′ π ⊗ σ′. Then the following
holds:

µ∗(δ([ν−aρ, νbρ]) o σ) =
b∑

i=−a−1

b∑
j=i

∑
π,σ′

δ([ν−iαρ̃, νaαρ̃])× δ([νj+1ρ, νbρ])× π

⊗ δ([νi+1ρ, νjρ]) o σ′.
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We omit δ([νxρ, νyρ]) if x > y.

3 Some preliminary results on theta corre-

spondence

In this section we summarize the relevant material on the theta correspon-
dence which will be used afterwards in the paper.

Let σ denote an irreducible genuine smooth representation of S̃p(n), and
let Θ(σ, r) be a smooth representation of O(Vr) given as the full lift of σ to
the r-th level of the orthogonal tower, i.e., the biggest quotient of ωn,r on

which S̃p(n) acts as a multiple of σ. We write Θ+(σ, r) and Θ−(σ, r) when
emphasizing the tower.

Similarly, if τ is an irreducible smooth representation of O(Vr), then one

has its full lift Θ(τ, n), which is a smooth genuine representation of S̃p(n).
In the following theorem we summarize some basic results about the theta

correspondence, which can be found in [7] and [14]. Note that we assume
that the residual characteristic of the field F is different than 2.

Theorem 3.1. Let σ denote an irreducible genuine smooth representation

of S̃p(n). Then there exists a non-negative integer r such that Θ(σ, r) 6= 0.
The smallest such r is called the first occurrence index of σ in the orthogonal
tower, we denote it by r(σ). Also, r(σ) ≤ 2n and Θ(σ, r′) 6= 0 for r′ ≥ r(σ).

The representation Θ(σ, r) is either zero or it has a unique irreducible
quotient. Following [16], we write σ(r) for this unique irreducible quotient.

If σ is an irreducible cuspidal representation of S̃p(n) then σ(r(σ)) is an
irreducible cuspidal representation of O(Vr(σ)).

The analogous statements hold for Θ(τ, n) if τ is an irreducible smooth
representation of O(Vr).

In the sequel we write r+(σ) (resp., r−(σ)) for the first occurrence index

of irreducible genuine smooth representation σ of S̃p(n) in the orthogonal
+–tower (resp., orthogonal −–tower). Also, we write σ+(r) (resp., σ−(r)) for
the unique irreducible quotient of the representation Θ(σ, r) in the orthogonal
+–tower (resp., orthogonal −–tower).

The first occurrence indices are related by the following theorem of Kudla
and Rallis ([8]):
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Theorem 3.2. If σ is an irreducible genuine smooth representation of S̃p(n),
then the inequality

r+(σ) + r−(σ) ≥ 2n (1)

holds. Further, if σ is a supercuspidal representation then the equality holds
in (1).

They also conjectured equality in (1) and this equality is known as the
conservation relation.

Let ρ denote an irreducible self-contragredient cuspidal representation of

GL(m,F ) and σ denote an irreducible cuspidal representation of S̃p(n). It is
well-known that there exists a unique non-negative real number s1 such that
νs1ρ o σ(r(σ)) reduces ([19]). It is proved in [5], and also independently in
[3], that there is a unique non-negative real number s2 such that νs2χV,ψρoσ
reduces. If ρ is not a trivial representation of F×, then s1 = s2. Otherwise,
s1 = |n−mr(σ)| and s2 = |mr(σ) − n− 1|.

Now we state the results of Gan and Savin which play a central role in
our determination of the first occurrence indices (Section 6 and Theorem 8.1
of [3]).

Theorem 3.3. Let F be a non-archimedean local field of characteristic 0
with odd residual characteristic. For each non-trivial additive character ψ of
F , there is an injection

Θψ : Irr(S̃p(n)) → Irr(O(V +
n )) t Irr(O(V −

n−1))

given by the theta correspondence (with respect to ψ). Suppose that σ ∈
Irr(S̃p(n)) and τ ∈ Irr(O(V )) correspond under Θψ. Then σ is a discrete
series representation if and only if τ is a discrete series representation.

By abuse of notation, we write

tε =

{
0, if ε = +
1, if ε = −.

The following lemma, which is proved in Section 5 of [11] and completely
relies on Kudla’s filtration given in [6], presents a fundamental criterion for
pushing down the lifts of irreducible representations of metaplectic groups.
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Lemma 3.4. Suppose that σ is an irreducible genuine representation of

S̃p(n).
(i) Then Θ(σ, r) 6= 0 implies RP1(Θ(σ, r + 1))(ν−(mr+1−n−1)) 6= 0.
(ii) Further, if R

fP1
(σ)(ν−(mr+1−n−1)χV,ψ) = 0, then Θ(σ, r) 6= 0 if and only

if RP1(Θ(σ, r+1))(ν−(mr+1−n−1)) 6= 0. In that case, σ(r+1) ↪→ ν−(mr+1−n−1)o
σ(r).

The following proposition is well-known:

Proposition 3.5. Let σ denote an irreducible genuine cuspidal representa-

tion of S̃p(n). If k > r(σ), then σ(k) is an irreducible subrepresentation of
the induced representation

νn−mk+1 × νn−mk+2 × · · · × νn−mr(σ) o σ(r(σ)).

Similarly as in [3], one obtains the following metaplectic version of The-
orem 6.1 from [17]:

Proposition 3.6. Let σ ∈ Irr(S̃p(n)) denote a discrete series representation
and let ε denote an arbitrary element of {+,−}. Let k = n−tε if rε(σ) ≤ n−tε
and k = rε(σ) otherwise. If l satisfies l ≥ k then σε(l) is an irreducible
subrepresentation of the induced representation

νn−ml+1 × νn−ml+2 × · · · × νn−mk o σε(k).

Now we state, without proof, two propositions which present a core of the
inductive approach that we use for determining the first occurrence indices.
These propositions can be proved in completely analogous way as Remark
5.2. and Lemma 5.2. of [16].

Proposition 3.7. Suppose that the representation σ ∈ Irr(S̃p(n)) may be
written as an irreducible subrepresentation of the induced representation of
the form δ([νaχV,ψρ, ν

bχV,ψρ]) o σ′, where ρ is an irreducible cuspidal repre-

sentation, σ′ ∈ Irr(S̃p(n′)) and b− a ≥ 0. Let Θ(σ, r) 6= 0. Then one of the
following holds:

• There is an irreducible representation τ of some O(Vr′) such that σ(r)
is a subrepresentation of δ([νaρ, νbρ]) o τ .
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• There is an irreducible representation τ of some O(Vr′) such that σ(r)
is a subrepresentation of δ([νa+1ρ, νbρ]) o τ.

The latter situation is impossible unless (a, ρ) = (mr − n, 1F×).

Suppose that δ([νaχV,ψρ, ν
bχV,ψρ]) is a representation of ˜GL(l, F ) and

(a, ρ) 6= (mr − n, 1F×). Also, suppose that if µ∗(σ) contains the represen-
tation δ([νaχV,ψρ, ν

bχV,ψρ])⊗ σ′′ for some irreducible genuine representation

σ′′ of ˜Sp(n− l), then σ′′ ∼= σ′. Then σ(r) is a subrepresentation of

δ([νaρ, νbρ]) o σ′(r − l).

Proposition 3.8. Suppose that the representation τ ∈ Irr(O(Vr)) may be
written as an irreducible subrepresentation of the induced representation of
the form δ([νaρ, νbρ]) o τ ′, where ρ is an irreducible cuspidal representation,
τ ′ ∈ Irr(O(Vr′)) and b− a ≥ 0. Let Θ(τ, n) 6= 0. Then one of the following
hold:

• There is an irreducible representation σ of some S̃p(n′) such that τ(n)
is a subrepresentation of δ([νaχV,ψρ, ν

bχV,ψρ]) o σ.

• There is an irreducible representation σ of some S̃p(n′) such that τ(n)
is a subrepresentation of δ([νa+1χV,ψρ, ν

bχV,ψρ]) o σ.

The latter situation is impossible unless (a, ρ) = (n−mr + 1, 1F×).
Suppose that δ([νaρ, νbρ]) is a representation of GL(l, F ) and (a, ρ) 6=

(n − mr + 1, 1F×). Further, suppose that if µ∗(τ) ≥ δ([νaρ, νbρ]) ⊗ τ ′′, for
some irreducible genuine representation τ ′′ of O(Vr−l), then τ ′′ ∼= τ ′. Then
τ(n) is a subrepresentation of

δ([νaχV,ψρ, ν
bχV,ψρ]) o τ ′(n− l).

We take a moment to state the explicit description of the cuspidal support
of theta lifts, given in Section 2 of the paper [6], which appears to be very
useful for obtaining precise information about the lifts of discrete series.
Following [6], we denote the cuspidal support of representation σ by [σ].

Theorem 3.9. Let τ denote an irreducible representation of O(Vr) and sup-
pose [τ ] = [ρ1, ρ2, . . . , ρk; τcusp], with τcusp being an irreducible cuspidal rep-
resentation of O(Vr′). Let σcusp = τcusp(n

′) be the first non-zero lift of the
representation τcusp. Let σ denote an irreducible subquotient of Θ(τ, n). We
have the following possibilities:
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• If n ≥ n′+r−r′, then [σ] = [χV,ψν
mr−n, χV,ψν

mr−n+1, . . . , χV,ψν
mr′−n′−1, χV,ψρ1, χV,ψρ2, . . . , χV,ψρk;

σcusp],

• If n < n′+ r− r′, set t = r− r′−n+n′. Then there exist i1, i2, . . . , it ∈
{1, 2, . . . , k} such that ρij = νmr−n−j for j = 1, 2, . . . , t and [σ] =
[χV,ψρ1, . . . , χ̂V,ψρi1 , . . . , χ̂V,ψρit , . . . , χV,ψρk;σcusp], where χ̂V,ψρi means
that we omit χV,ψρi.

Similarly, let σ denote an irreducible genuine representation of S̃p(n)
and suppose [σ] = [χV,ψρ1, χV,ψρ2, . . . , χV,ψρk;σcusp], with σcusp being an ir-

reducible genuine cuspidal representation of S̃p(n′). Let τcusp = σcusp(r
′) be

the first non-zero lift of the representation σcusp. Let τ denote an irreducible
subquotient of Θ(σ, r). We have the following possibilities:

• If r ≥ r′+n−n′, then [τ ] = [νmr−n−1, νmr−n−2, . . . , νmr′−n′ , ρ1, ρ2, . . . , ρk;
τcusp],

• If r < r′+n−n′, set t = r′−n′+n− r. Then there exist i1, i2, . . . , it ∈
{1, 2, . . . , k} such that ρij = νmr−n+j−1 for j = 1, 2, . . . , t and [τ ] =
[ρ1, . . . , ρ̂i1 , . . . , ρ̂it , . . . , ρk; τcusp], where ρ̂i means that we omit ρi.

4 The conservation relation for strongly pos-

itive representations

This section is devoted to the proof of the conservation relation for strongly
positive discrete series.

Let σ denote an irreducible genuine representation of S̃p(n) and let σcusp ∈
Irr(S̃p(n′)) denote the partial cuspidal support of σ.

Several cases, depending on the structure of the cuspidal support of the
representation σ, shall be considered separately.

Let us first assume that the representation νxχV,ψ does not appear in the
cuspidal support of σ, for x ∈ R.

The following theorem, together with Theorem 3.2, establishes the con-
servation relation in this case.

Theorem 4.1. If there are no twists of the representation χV,ψ1F× appearing
in the cuspidal support of σ, then rε(σ) = n− n′ + rε(σcusp) for ε ∈ {+,−}.
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Further, the first non-zero lift of σ is strongly positive representation whose
cuspidal support contains no twists of the trivial representation 1F×.

Proof. Theorem obviously holds if σ is a cuspidal representation, i.e., if
σ ∼= σcusp. We prove the theorem for non-cuspidal strongly positive rep-
resentation σ using induction over the number of segments needed to obtain
the representation σ starting from its partial cuspidal support.

According to Theorem 2.1, σ can be written as a unique irreducible sub-
representation of the induced representation of the form δ([νaχV,ψρ, ν

bχV,ψρ])o
σ1, where σ1 ∈ Irr(S̃p(l)) is a strongly positive discrete series. Also, if

µ∗(σ) ≥ δ([νaχV,ψρ, ν
bχV,ψρ]) ⊗ σ′ for some σ′ ∈ Irr(S̃p(l)), then σ′ ∼= σ1.

We assume that theorem holds for σ1 and prove it for σ.
Since ρ 6= 1F× , Proposition 3.7 implies

σ(r) ↪→ δ([νaρ, νbρ]) o σ1(r − n+ l),

for r such that r − n+ l ≥ r(σ1).
There exists some r such that Θ(σ, r) 6= 0. If r − n + l > r(σ1), since

R
fP1

(σ1)(ν
xχV,ψ) = 0 for all x, Lemma 3.4 (ii) provides an embedding σ1(r−

n+ l) ↪→ νl−mr−n+l−1 o σ1(r − n+ l − 1).
This gives

σ(r) ↪→ δ([νaρ, νbρ])× νl−mr−n+l−1 o σ1(r − n+ l − 1)

∼= νl−mr−n+l−1 × δ([νaρ, νbρ]) o σ1(r − n+ l − 1).

Since l −mr−n+l−1 = n−mr−1, Lemma 3.4 (ii) yields σ(r − 1) 6= 0.
We continue in this fashion to obtain r(σ) ≤ n − n′ + r(σcusp). Also,

Proposition 3.7 shows

σ(n− n′ + r(σcusp)) ↪→ δ([νaρ, νbρ]) o σ1(l − n′ + r(σcusp)). (2)

Since by the inductive assumption r(σ1) = l − n′ + r(σcusp) and there are
no twists of 1F× appearing in the cuspidal support of σ1(l − n′ + r(σcusp)),
Lemma 3.4 (i) shows r(σ) = n− n′ + r(σcusp).

Clearly, there are no twists of 1F× appearing in the cuspidal support of
σ(r(σ)), while the strong positivity of σ(r(σ)) follows directly from (2) and
the description of strongly positive representations given in [9].
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If we denote by ε1 an element of {+,−} such that rε1(σcusp) ≤ n′−tε1 , by ε2
an element of {+,−} different than ε1 and suppose that νsχV,ψoσcusp reduces
for s ≥ 0, then the previous result can be rewritten as rε1(σ) = n−s+ 1

2
− tε1

and rε2(σ) = n+ s+ 1
2
− tε2 .

In the rest of this section we suppose that there is some representation
of the form νxχV,ψ appearing in the cuspidal support of σ. Let a1 denote
minimal x > 0 such that νxχV,ψ appears in [σ]. By Theorem 2.1 there is a
non–negative integer k such that νa1+kχV,ψ o σcusp reduces. It follows from
Section 4 of [5] that a1 + k is half integral. Consequently, a1 is also half
integral.

Thus, σ can be written as the unique irreducible subrepresentation of
the induced representation of the form δ([νa1χV,ψ, ν

b1χV,ψ]) o σ1, where σ1 ∈
Irr(S̃p(l)) is a strongly positive representation and νa1χV,ψ does not appear
in the cuspidal support of σ1. Further, if µ∗(σ) ≥ δ([νa1χV,ψ, ν

b1χV,ψ]) ⊗ σ2

for some σ2 ∈ Irr(S̃p(l)), then σ2
∼= σ1.

Theorem 6.1 from [10] shows R
fP1

(σ)(νxχV,ψ) = 0 for x < b1.
It is a direct consequence of Theorem 3.2 that there is exactly one ε ∈

{+,−} such that rε(σcusp) ≤ n′ − tε. In the rest of this section we denote
such ε by ε1 and let ε2 denote an element of {+,−} different than ε1.

There are two possibilities to consider:

• a1 >
1
2
.

The first occurrence indices are given by the following theorem:

Theorem 4.2. If a1 > 1
2

then rε1(σ) = n − tε1 − a1 + 3
2

and rε2(σ) =
n− tε2 +a1− 1

2
. Both representations σε1(rε1(σ)) and σε2(rε2(σ)) are strongly

positive. Also, if we denote by xi the minimal x > 0 such that νx appears in
[σεi(rεi(σ))], for i = 1, 2, then x1 = a1 − 1 and x2 = a1 + 1.

Proof. Let k denote a non–negative integer such that a1 + k = s where s is a
positive real number such that νsχV,ψ oσcusp reduces. We prove the theorem
using induction on k.

First we assume k = 0. We begin by determining the first occurrence
index in ε2–tower.

It is shown in Theorem 4.1 that rε2(σ1) = l−n′+rε2(σcusp). Since a1 > 0,
it is a direct consequence of Proposition 3.7 that rε2(σ) > n− tε2 .
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For r > n− l + rε2(σ1) = n− n′ + rε2(σcusp) we have

σε2(r) ↪→ δ([νa1 , νb1 ]) o σε21 (r − n+ l)

↪→ δ([νa1 , νb1 ])× νn−mr−1 o σε21 (r − n+ l − 1)

∼= νn−mr−1 × δ([νa1 , νb1 ]) o σε21 (r − n+ l − 1)

(note that we are in the first case of the Proposition 3.7).
Repeating this procedure and using Lemma 3.4 (ii) we get rε2(σ) ≤ n −

n′ + rε2(σcusp).

We denote by τ
(2)
cusp the first non–zero lift of σcusp in the ε2–tower. Note

that mrε2 (σcusp) − n′ = a1 + 1 (this also gives rε2(σcusp) = a1 + 1
2

+ n′ − tε2)

and νs
′ o τ

(2)
cusp reduces for s′ = a1 + 1.

By Theorem 4.1, the first non–zero lift of the representation σ1 is the
strongly positive representation and it can be written as an irreducible sub-
representation of the induced representation of the form π o τ

(2)
cusp, where π

is a product of essentially square-integrable representations attached to the
segments not containing representation of the form νx1F× , x ∈ R.

We have the following embeddings and isomorphisms:

σε2(n− n′ + rε2(σcusp)) ↪→ δ([νa1 , νb1 ])× π o τ (2)
cusp

↪→ δ([νa1+1, νb1 ])× νa1 × π o τ (2)
cusp

∼= δ([νa1+1, νb1 ])× π × νa1 o τ (2)
cusp

∼= δ([νa1+1, νb1 ])× π × ν−a1 o τ (2)
cusp

∼= ν−a1 × δ([νa1+1, νb1 ])× π o τ (2)
cusp.

Since n − mn−n′+rε2 (σcusp)−1 = −a1, using Lemma 3.4 (ii) we get rε2(σ) ≤
n− n′ + rε2(σcusp)− 1 = n+ a1 − 1

2
− tε2 .

It is a direct consequence of Theorem 3.9 that the representation νa1 does
not appear in the cuspidal support of Θε2(σ, n+a1− 1

2
− tε2). So, Proposition

3.7 shows that σε2(n + a1 − 1
2
− tε2) is a subrepresentation of the induced

representation of the form δ([νa1+1, νb1 ]) o τ, where τ has the same cuspidal

support as π o τ
(2)
cusp.

We will show that τ is a discrete series representation. Suppose on
the contrary that τ is not square-integrable. According to Lemma 3.4 of
[11], there is an embedding τ ↪→ δ([νaρ, νbρ]) o τ ′, where a + b ≤ 0, ρ ∈
Irr(GL(nρ, F )) and τ ′ is an irreducible representation of some O(V ε2

l′ ). In
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that case, σε2(n + a1 − 1
2
− tε2) is a subrepresentation of δ([νa1+1, νb1 ]) ×

δ([νaρ, νbρ])o τ ′ and applying Proposition 3.8 it is a simple matter to obtain
a contradiction with the strong positivity of σ.

Since τ is square-integrable, Lemma 3.6 from [10] implies that it is strongly
positive. It follows that σε2(n+ a1 − 1

2
− tε2) is an irreducible subrepresenta-

tion of δ([νa1+1, νb1 ]) o τ and Theorem 5.3 from [9] shows that it is strongly
positive. Thus, by Lemma 3.4 (i), rε2(σ) = n+ a1 − 1

2
− tε2 .

Now we determine the first occurrence index in the ε1–tower.
We have already proved rε1(σ1) = l − n′ + rε1(σcusp). We will denote by

τ
(1)
cusp the first non–zero lift of σcusp in the ε1–tower. Note that in this case

νs
′ o τ

(1)
cusp reduces for s′ = a1− 1. Further, rε1(σcusp) = n′− a1− tε1 + 1

2
, thus

rε1(σ1) = l − a1 − tε1 + 1
2
.

Since rε2(σ) > n− tε2 , Theorem 3.3 shows that rε1(σ) ≤ n− tε1 .
Starting from the n− tε1–th level of the ε1–tower, for r > n− l+rε1(σ1)+

1 = n− a1 − tε1 + 3
2
, in each step we have

σε1(r) ↪→ δ([νa1 , νb1 ])× σε11 (r − n+ l)

↪→ νn−mr−1 × δ([νa1 , νb1 ])× σε11 (r − n+ l − 1).

Observe that for r as above we have n−mr−1 < a1 − 1 and a1 > mr − n so
we are in the first case of Proposition 3.7.

Lemma 3.4 (ii) gives rε1(σ) ≤ n − a1 − tε1 + 3
2
. Since tε1 + tε2 = 1, from

(1) and and already determined rε2(σ) we obtain rε1(σ) = n− a1 − tε1 + 3
2
.

Further, we have the following embeddings and intertwining operator:

σε1(rε1(σ)) ↪→ δ([νa1 , νb1 ]) o σε11 (rε1(σ1) + 1)

↪→ δ([νa1 , νb1 ])× νa1−1 o σε11 (rε1(σ1))

→ νa1−1 × δ([νa1 , νb1 ]) o σε11 (rε1(σ1)).

Part (ii) of Lemma 3.4 shows that σε1(rε1(σ)) is contained in the kernel of the
last intertwining operator, and this kernel is isomorphic to δ([νa1−1, νb1 ]) o
σε11 (rε1(σ1)). We have already shown that σε11 (rε1(σ1)) is the strongly positive
representation and it is a direct consequence of the classification of strongly
positive discrete series that δ([νa1−1, νb1 ]) o σε11 (rε1(σ1)) has the unique irre-
ducible subrepresentation which is also strongly positive.

Suppose that k ≥ 1 and that the claim holds for all non–negative numbers
less than k. We prove it for k.
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In this case, σ is subrepresentation of the induced representation of the

form δ([νa1χV,ψ, ν
b1χV,ψ])oσ1, where σ1 ∈ Irr(S̃p(l)) is strongly positive and

minimal x > 0 such that νxχV,ψ appears in [σ1] equals a1 + 1.
First we determine the first occurrence index in the ε2-tower.
The inductive assumption implies rε2(σ1) = l + a1 + 1

2
− tε2 . Also, the

first non-zero lift of σ1 in the ε2–tower is the strongly positive representation
that can be written as the unique irreducible subrepresentation of π o τ

(2)
cusp,

where π is a product of representations attached to the segments which do
not contain νx for x ≤ a1 + 1 and τ

(2)
cusp is the first non-zero lift of σcusp in

ε2–tower.
In completely analogous way as before we obtain rε2(σ) ≤ n+a1 + 1

2
− tε2 .

Also,

σε2(n+a1+
1

2
−tε2) ↪→ δ([νa1+1, νb1 ])×νa1×πoτ (2)

cusp
∼= ν−a1×δ([νa1+1, νb1 ])×πoτ (2)

cusp

since νa1 o τ
(2)
cusp is irreducible. Lemma 3.4 (ii) gives rε2(σ) ≤ n+ a1− 1

2
− tε2 .

Proposition 3.7 now leads to an embedding σε2(n + a1 − 1
2
− tε2) ↪→

δ([νa1+1, νb1 ]) o τ , for some irreducible representation τ . Our next claim is
that τ is a discrete series representation.

Suppose, contrary to our claim, that τ is not the discrete series represen-
tation. Then there exists an embedding of the form τ ↪→ δ([νaρ, νbρ]) o τ ′,
where τ ′ is irreducible, a+ b ≤ 0 and ρ is an irreducible cuspidal representa-
tion of some GL(nρ, F ).

Consequently, σε2(n+ a1− 1
2
− tε2) can be written as a subrepresentation

of δ([νa1+1, νb1 ])× δ([νaρ, νbρ]) o τ ′. If ρ is not isomorphic to 1F× , we get

σε2(n+ a1 −
1

2
− tε2) ↪→ δ([νaρ, νbρ])× δ([νa1+1, νb1 ]) o τ ′,

while in the other case we have

σε2(n+ a1 −
1

2
− tε2) ↪→ δ([νa, νb

′
]) o τ ′′,

where b′ ≥ b, and τ ′′ is an irreducible representation of some O(V ε2
l′ ). Since

a 6= −a1 + 1, because ν−a1+1 does not appear in the cuspidal support of τ ,
using Proposition 3.8 we get a contradiction with the strong positivity of σ.

Therefore, τ is a discrete series representation, and by [10], Lemma 3.6,
it is strongly positive. It is easy to conclude that σε2(n+ a1− 1

2
− tε2) is also
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a strongly positive discrete series and minimal x > 0 such that νx appears
in its cuspidal support equals a1 + 1. Theorem 6.1 from [10] and Lemma
3.4 (i) imply that n + a1 − 1

2
− tε2 is the first occurrence index of σ in the

ε2–orthogonal tower.
Let us now determine the first occurrence index in the other tower. Simi-

larly as before, we start from rε1(σ) ≤ n−tε1 . Using the inductive assumption
rε1(σ1) = l−a1− tε1 + 1

2
and following the same lines as in the previous cases,

we obtain rε1(σ) ≤ n − a1 − tε1 + 3
2
. Already determined rε2(σ) and the

inequality (1) provide the equality rε1(σ) = n− a1 − tε1 + 3
2
.

Further, we have

σε1(rε1(σ)) ↪→ δ([νa1 , νb1 ])oσε11 (rε1(σ1)+1) ↪→ δ([νa1 , νb1 ])×νa1−1oσε11 (rε1(σ1))

and in the same way as before we see that σε1(rε1(σ)) is the strongly positive
subrepresentation of δ([νa1−1, νb1 ]) o σε11 (rε1(σ1)) and the proof is complete.

• a1 = 1
2
.

The following theorem, together with Theorem 4.1 and Theorem 4.2,
establishes the conservation relation for the strongly positive discrete series
of metaplectic groups.

Theorem 4.3. If a1 = 1
2
, then rε1(σ) = n − tε1 + 1 and rε2(σ) = n − tε2.

The representation σε2(rε2(σ)) is strongly positive, while the representation
σε1(rε1(σ)) is a non-strongly positive discrete series.

Proof. The representation σ is a subrepresentation of δ([ν
1
2χV,ψ, ν

b1χV,ψ]) o
σ1, where σ1 ∈ Irr(S̃p(l)) is the strongly positive representation such that
either there are no twists of χV,ψ appearing in [σ1] or the minimal x > 0 such
that νxχV,ψ appears in [σ1] equals 3

2
. In any case, rε(σ1) ≤ l + 1 − tε for

ε ∈ {+,−}, by Theorems 4.1 and 4.2.
Since σ is strongly positive and mr−n > 1

2
for r ≥ n+1− tε, we may use

an inductive procedure based on Lemma 3.4 and Proposition 3.7 to obtain
rε(σ) ≤ n+ 1− tε, for ε ∈ {+,−}.

Let us denote by τcusp a cuspidal representation σε2cusp(r
ε2(σcusp)). Note

that the representation ν
1
2 o τcusp is irreducible.

Using Theorems 4.1 and 4.2 we see that σε2(n + 1 − tε2) can be written
as an irreducible subrepresentation of the induced representation of the form
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δ([ν
1
2 , νb1 ])× π o τcusp, where π is a representation induced from representa-

tions attached to the segments not containing ν
3
2 . It is now easy to obtain

an embedding

σε2(n+ 1− tε) ↪→ ν−
1
2 × δ([ν

3
2 , νb1 ])× π o τcusp,

and Lemma 3.4 (ii) yields rε2(σ) ≤ n− tε2 .
Inequality (1) shows rε1(σ) = n− tε1 + 1 and rε2(σ) = n− tε2 .
Let us now prove that σε2(rε2(σ)) is the strongly positive representation.

Otherwise, by Lemma 3.4 and Theorem 3.5 from [11], there are a, b ∈ R,
a ≤ 0, a cuspidal representation ρ ∈ GL(nρ, F ) and an irreducible repre-
sentation τ of the corresponding orthogonal group such that σε2(rε2(σ)) is a
subrepresentation of δ([νaρ, νbρ]) o τ . Using Proposition 3.8 we get a con-
tradiction with the strong positivity of σ. Since a strongly positive discrete
series representation is completely determined by its cuspidal support, it is
not hard to see that σε2(rε2(σ)) can be characterized as the unique irreducible

subrepresentation of δ([ν
3
2 , νb1 ]) o σε21 (rε2(σ1)).

On the other hand, σε1(n− tε1 +1) is a subrepresentation of δ([ν
1
2 , νb1 ])o

σε11 (rε1(σ1) + 1). Since σε11 (rε1(σ1) + 1) is a subrepresentation of ν−
1
2 o

σε11 (rε1(σ1)), using Lemma 3.4 (ii) we deduce

σε1(n− tε1 + 1) ↪→ δ([ν−
1
2 , νb1 ]) o σε11 (rε1(σ1)).

Obviously, σε1(n − tε1 + 1) is not strongly positive. We have already shown
that σε11 (rε1(σ1)) is a strongly positive representation and it is easy to check
that RP1(σ

ε1
1 (rε1(σ1)))(ν

x) = 0 holds for x ≤ b1. The fact that σε1(n− tε1 +1)
is square–integrable is an integral part of the Mœglin-Tadić classification of
discrete series. This proves the theorem.

We also note the following corollary, which is a generalization of Propo-
sition 3.5 for the strongly positive discrete series:

Corollary 4.4. Let σ ∈ Irr(S̃p(n)) denote a strongly positive representation.
If k > r(σ), then σ(k) is an irreducible subrepresentation of the induced
representation

νn−mk+1 × νn−mk+2 × · · · × νn−mr(σ) o σ(r(σ)).

The following theorem supplements the results of Gan and Savin [3].
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Theorem 4.5. Suppose that σ ∈ Irr(S̃p(n)) and τ ∈ Irr(O(V )) correspond
under Θψ. Then σ is a strongly positive discrete series if and only if τ is a
strongly positive discrete series.

Proof. First we assumes that σ is strongly positive. If the representation
ν

1
2χV,ψ appears in [σ], previous theorem shows that τ is also strongly positive.

Otherwise, Theorem 3.9 shows that if there is some twist of the representation
ρ appearing in [τ ] then there exists at most one 0 < x < 1 such that νxρ
appears in [τ ]. We already know that τ is a discrete series representation,
and Theorem 3.5 of [11] implies that it is strongly positive.

Conversely, suppose that σ is not strongly positive. Lemma 3.4 and
Theorem 3.5 of [11] show that then σ can be written as a subrepresentation
of the induced representation of the form δ[νaχV,ψρ, ν

bχV,ψρ]oσ′, where a ≤ 0
and σ′ is an irreducible representation. Applying Proposition 3.7 we obtain
that τ is not strongly positive. Hence, the strong positivity of τ implies
strong positivity of σ. This proves the theorem.

5 The conservation relation for discrete se-

ries subquotients

The objective of this section is to prove the conservation relation for discrete
series which appear as irreducible subquotients of generalized principal series,
where the representation on the metaplectic part is strongly positive.

Let σ denote such discrete series of S̃p(n), i.e., σ ≤ δ([νxχV,ψρ
′, νyχV,ψρ

′])o
σ1, where the representation σ1 is strongly positive. Throughout this section
we assume that σ is not strongly positive.

According to Theorem 3.5 from [11], there exists an embedding of the
form

σ ↪→ δ([ν−a1χV,ψρ1, ν
b1χV,ψρ1])× · · · × δ([ν−akχV,ψρk, ν

bkχV,ψρk]) o σsp,

where ai ≥ 0, ai + bi > 0 and ρi is an irreducible cuspidal representation of
GL(ni, F ) (this defines ni) for i = 1, 2, . . . , k, while σsp is a strongly positive

discrete series of S̃p(m) for some m. The assumption on σ obviously yields
k ≥ 1. Inspecting the cuspidal support of σ more closely, similarly as in
Section 6 of [11], we deduce k = 1.
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Thus, σ can be written as a subrepresentation of an induced representa-
tion of the form

δ([ν−aχV,ψρ, ν
bχV,ψρ]) o σsp,

where a ≥ 0, b − a > 0 and ρ is an irreducible cuspidal representation of
GL(nρ, F ) (this defines nρ).

It is well-known that ρ has to be self-contragredient (details can be found
in [22]). Let σcusp denote the partial cuspidal support of σ and let s(ρ) denote
a non–negative real number such that the induced representation νs(ρ)χV,ψρo
σcusp reduces. In order to apply the inductive procedure for determining the
first occurrence indices of σ, we shall consider several possibilities.

Let us first assume 2s(ρ) /∈ Z.
Observe that either a − s(ρ) ∈ Z or a + s(ρ) ∈ Z, since otherwise the

induced representation δ([ν−aχV,ψρ, ν
bχV,ψρ]) o σsp could not contain any

discrete series subquotients (this also follows from [22]). In this case, the
crucial requirement is given by the following lemma.

Lemma 5.1. If δ([ν−aχV,ψρ, ν
bχV,ψρ]) ⊗ σ′ appears in µ∗(σ) for some irre-

ducible genuine representation σ′, then σ′ ∼= σsp. Moreover, such representa-
tion is contained in Jacquet module of σ with the multiplicity one.

Proof. It is the consequence of Lemma 2.2 that there exists some irreducible
constituent π ⊗ σ′′ of µ∗(σsp) and real numbers i, j satisfying the properties
i+ a ∈ Z, j − i ∈ Z, −a− 1 ≤ i ≤ j ≤ b, such that

δ([ν−aχV,ψρ, ν
bχV,ψρ]) ≤ δ([ν−iχV,ψρ, ν

aχV,ψρ])× δ([νj+1χV,ψρ, ν
bχV,ψρ])× π

and σ′ ≤ δ([νi+1χV,ψρ, ν
jχV,ψρ]) o σ′′.

We determine all such i and j comparing the cuspidal supports. Since
a > 0 and 2a /∈ Z, it follows that b − a is not an integer. Consequently,
νaχV,ψρ does not appear in the cuspidal support of δ([ν−aχV,ψρ, ν

bχV,ψρ]) so
i = −a− 1.

The representation σsp is strongly positive and by Theorem 6.1 of [10]
ν−aχV,ψρ does not appear in the cuspidal support of π. This leads to j = i =
−a− 1. Thus, σ′ ∼= σ′′ ∼= σsp and the lemma is proved.

Suppose that σsp is a representation of S̃p(n′). Combining Proposition
3.7 with the previous lemma, it is not hard to see that Θε(σ, r) 6= 0 if and
only if Θε(σsp, r−n+n′) 6= 0, for ε ∈ {+,−}. Moreover, if Θε(σ, r) 6= 0, then

σε(r) ↪→ δ([ν−aχV,ψρ, ν
bχV,ψρ]) o σεsp(r − n+ n′).
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So, rε(σ) = rε(σsp)+n−n′ and r+(σ)+r−(σ) = r+(σsp)+r−(σsp)+2n−2n′.
Since σsp is strongly positive, using the results of the previous section we get
r+(σ) + r−(σ) = 2n.

In the rest of this section we assume 2s(ρ) ∈ Z. First we will describe
appropriate embeddings of the representation σ.

Let ε1 ∈ {+,−} such that Θε1(σ, n− tε1) 6= 0. Theorem 3.3 implies that
σε1(n− tε1) is a discrete series and Theorem 4.5 shows that it is not strongly
positive. The work of Mœglin and Tadić [12, 13], together with Theorem 3.9,
enables us to obtain an embedding

σε1(n− tε1) ↪→ δ([ν−c1ρ, νd1ρ])× · · · × δ([ν−clρ, νdlρ]) o τsp,

such that ci ≥ 0 and ci + di > 0 for i = 1, 2, . . . , l, τsp is a strongly positive
discrete series,

RP1(δ([ν
−ciρ, νdiρ])× · · · × δ([ν−clρ, νdlρ]) o τsp)(ν

xρ) = 0,

for ci−1 ≤ x ≤ di−1 and i = 2, 3, . . . , l, and RP1(τsp)(ν
xρ) = 0 for cl ≤ x ≤ dl.

Using Theorem 3.9 again, we obtain l ≤ 2 and l = 1 if ρ is not isomorphic
to 1F× .

Let us first observe that l equals 1. Suppose, contrary to our claim, l = 2.
This gives ρ = 1F× . Using results of [13] again, we write σε1(n − tε1) as a
subrepresentation of δ([ν−c1 , νd1 ])oτ ′, where τ ′ is a discrete series representa-
tion, the subrepresentation of δ([ν−c2 , νd2 ])o τsp. Obviously, RP1(τ

′)(νx) = 0
for c1 ≤ x ≤ d1.

The following lemma can be proved in the same way as Theorem 2.3 in
[16] and uses the classical group version of Lemma 2.2.

Lemma 5.2. If δ([ν−c1 , νd1 ])⊗ τ1 appears in µ∗(σε1(n− tε1)), for some irre-
ducible representation τ1, then τ1 ∼= τ ′.

It can be concluded in the same way that if µ∗(τ ′) ≥ δ([ν−c2 , νd2 ]) ⊗ τ ′′

for some irreducible representation τ ′′, then τ ′′ ∼= τsp. Applying Proposition
3.8 two times, first for the representation σε1(n − tε1) and then for the rep-
resentation τ ′, we conclude that there is some irreducible representation σ′

such that σ is a subrepresentation of the induced representation

δ([ν−c1χV,ψ, ν
d1χV,ψ])× δ([ν−c2χV,ψ, ν

d2χV,ψ]) o σ′,

which is impossible since the representation ν
1
2χV,ψ appears at most three

times in the cuspidal support of σ.
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Thus, l = 1. In this way we have shown that σε1(n− tε1) can be written
as an irreducible subrepresentation of the induced representation of the form

δ([ν−cρ, νdρ]) o τsp,

where c > 0, −c+ d > 0 and RP1(τsp)(ν
xρ) = 0 for c ≤ x ≤ d.

Suppose that δ([ν−cρ, νdρ]) is a representation of GL(l1, F ). In this no-
tation, using Proposition 3.8 and calculations with Jacquet modules similar
to those in Lemma 5.2, we obtain an embedding

σ ↪→ δ([ν−cχV,ψρ, ν
dχV,ψρ]) o τsp(n− l1).

Observe that τsp(n − l1) is also a strongly positive discrete series. For sim-
plicity of notation we denote it by σ′sp.

Description of the theta lifts of strongly positive discrete series given in
the previous section shows that if there is some x such that RP1(τsp)(ν

xρ) = 0
and R

fP1
(σ′sp)(ν

xχV,ψρ) 6= 0 then x < c. We thus get R
fP1

(σ′sp)(ν
xχV,ψρ) = 0

for c ≤ x ≤ d.
Using the same calculations with Jacquet modules as before, we are in

position to conclude that if there is some irreducible genuine representation
σ′ such that δ([ν−cχV,ψρ, ν

dχV,ψρ])⊗ σ′ appears in µ∗(σ), then σ′ ∼= σ′sp.
We have thus proved the following proposition:

Proposition 5.3. The representation σ can be written as a subrepresentation
of the induced representation of the form δ([ν−cχV,ψρ, ν

dχV,ψρ]) o σsp, where

c, d ≥ 0 and σsp ∈ Irr(S̃p(n′)) is a strongly positive representation such that
R
fP1

(σsp)(ν
xχV,ψρ) = 0 for c ≤ x ≤ d. If µ∗(σ) ≥ δ([ν−cχV,ψρ, ν

dχV,ψρ])⊗ σ′

for some irreducible genuine representation σ′, then σ′ ∼= σsp.

To each embedding σ ↪→ δ([ν−cχV,ψρ, ν
dχV,ψρ]) o σsp as in the previous

proposition we attach a non-negative real number a1 in the following way:

• If there are no twists of χV,ψ1F× appearing in [σsp], set a1 = 0.

• If some twist of the representation χV,ψ1F× appears in [σsp], let a1 de-
note the minimal x such that σsp is a subrepresentation of δ([νxχV,ψ, ν

b1χV,ψ])o
σ′sp, where σ′sp is strongly positive discrete series.

Among all such embeddings of σ we fix one with the minimal a1 with
respect to other embeddings and denote it by σ ↪→ δ([ν−cχV,ψρ, ν

dχV,ψρ])oσsp
again.
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In the following proposition we describe the first occurrence indices of
discrete series σ.

Proposition 5.4. Suppose that σsp ∈ Irr(S̃p(n′)) and let ε1 ∈ {+,−} such
that rε1(σsp) ≤ n′− tε1 and ε2 ∈ {+,−} different than ε1. Then the following
holds:

1. Suppose that ν
1
2χV,ψ does not appear in [σsp] and νsχV,ψ oσcusp reduces

for s > 0.

• Suppose that a1 = 0. If (c, ρ) = (s, 1F×) and R
fP1

(σ)(νsχV,ψ) = 0

then rε1(σ) = n−s− 1
2
−tε1 and rε2(σ) = n+s+ 3

2
−tε2. Otherwise

rε1(σ) = n− s+ 1
2
− tε1 and rε2(σ) = n+ s+ 1

2
− tε2.

• Suppose that a1 > 0. If (c, ρ) = (a1 − 1, 1F×) and a1 > 3
2
, or

(c, ρ) = (a1 − 1, 1F×) = (1
2
, 1F×) and R

fP1
(σ)(ν

1
2χV,ψ) = 0, then

rε1(σ) = n− a1 − tε1 + 1
2

and rε2(σ) = n+ a1 − tε2 + 1
2
. Otherwise

rε1(σ) = n− a1 − tε1 + 3
2

and rε2(σ) = n+ a1 − tε2 − 1
2
.

2. Suppose that ν
1
2χV,ψ appears in [σsp]. If (c, ρ) = (1

2
, 1F×) and R

fP1
(σ)(ν

1
2χV,ψ) =

0 then rε1(σ) = n − tε1 − 1 and rε2(σ) = n − tε2 + 2. Otherwise
rε1(σ) = n− tε1 and rε2(σ) = n− tε2 + 1.

Particularly, the conservation relation holds for σ.

The rest of this section will be devoted to the proof of Proposition 5.4.
First, if ρ is not equal 1F× , using the same reasoning as in the case of non-

half integral reducibility, we obtain Θ±(σ, r) 6= 0 if and only if Θ±(σ′sp, r −
n′ + n) 6= 0 and consequently rε(σ) = rε(σsp) − n′ + n. Thus, in the rest of
this section we may assume ρ = 1F× .

This is the most difficult case. Observe that it is a consequence of Propo-
sition 3.7 that Θε1(σ, n− tε1) 6= 0. Obviously, σε1(n− tε1) is a discrete series
representation which is not strongly positive.

In what follows the prominent role will be played by the following lemma:

Lemma 5.5. Suppose that σ is a discrete series representation of S̃p(n),
given as a subrepresentation of δ([ν−aχV,ψρ, ν

bχV,ψρ]) o σ1, where a ≥ 0,
ρ is a self-contragredient cuspidal representation and σ1 is an irreducible
representation. Also, assume that if µ∗(σ) contains δ([ν−aχV,ψρ, ν

bχV,ψρ])⊗
σ2, for some irreducible genuine representation σ2, then σ2

∼= σ1. Further, let
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(ρ, a) 6= (1F× , n− r− 1
2
− tε), Θε(σ, r) 6= 0 and R

fP1
(σ)(ν−(r− 1

2
+tε−n)χV,ψ) = 0,

for some r > 0 and ε ∈ {+,−}. If (ρ, a) 6= (1F× , r − n− 3
2

+ tε) and (ρ, b) 6=
(1F× , n− r − 1

2
− tε) then Θε(σ1, r − a− b− 2) 6= 0 implies Θε(σ, r − 1) 6= 0.

If (ρ, a) = (1F× , r − n − 3
2

+ tε), then Θε(σ1, r − a − b − 2) 6= 0 implies that
either Θε(σ, r − 1) 6= 0 or Θε(σ1, r − a− b− 3) = 0 holds.

Proof. We consider only the case (ρ, a) = (1F× , r−n− 3
2
+ tε), the other case

can be proved in the same way. Applying Proposition 3.7, we obtain

σε(r) ↪→ δ([ν−a, νb]) o σε1(r − a− b− 1).

Since Θε(σ1, r − a− b− 2) 6= 0, Lemma 3.4 (ii) provides an embedding

σε(r) ↪→ δ([ν−a, νb])× ν−a−1 o σε1(r − a− b− 2).

The intertwining operator

δ([ν−a, νb])× ν−a−1 → ν−a−1 × δ([ν−a, νb]),

provides the following maps

σε(r) ↪→ δ([ν−a, νb])× ν−a−1 o σε1(r − a− b− 2)

→ ν−a−1 × δ([ν−a, νb]) o σε1(r − a− b− 2).

If σε(r) is not contained in the kernel of previous intertwining operator, then
Lemma 3.4 (ii) yields Θε(σ, r−1) 6= 0. Otherwise, σε(r) is a subrepresentation
of δ([ν−a−1, νb]) o σε1(r − a− b− 2).

Suppose that Θε(σ1, r − a − b − 3) 6= 0. Then, applying Lemma 3.4 (ii)
again, we get the embedding σε1(r − a − b − 2) ↪→ ν−a o σε1(r − a − b − 3).
This clearly forces

σε(r) ↪→ ν−a × δ([ν−a−1, νb]) o σε1(r − a− b− 3).

Thus, there is some irreducible representation τ such that σε(r) ↪→ ν−a o τ
and using Proposition 3.8 we obtain R

fP1
(σ)(ν−aχV,ψ) 6= 0, which contradicts

the square integrability of σ. This proves the lemma.

We turn back to the investigation of the first occurrence indices. We shall
consider several subcases because in each of them we have to use different
methods. Also, the proof of Proposition 5.4 will be divided in the sequence
of lemmas.
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1. Suppose that the representation ν
1
2 appears three times in the cuspidal

support of σε1(n− tε1).

Proposition 3.7 gives

σε1(n− tε1) ↪→ δ([ν−c, νd]) o σε1sp(n
′ − tε1)

and results obtained in the previous section show that ν
1
2χV,ψ does not

appear in [σsp] and νsχV,ψ o σcusp reduces for s > 1
2
.

We will denote the partial cuspidal support of σε1(n− tε1) by τcusp.

First, suppose a1 = 0. Then σε1sp(n
′ − tε1) can be written as a unique

irreducible subrepresentation of the induced representation of the form

ν
1
2 × ν

3
2 × · · · × νs−1 o τsp1 , (3)

where νs−1 o τcusp reduces and there are no twists of the trivial rep-
resentation 1F× appearing in the cuspidal support of strongly positive
discrete series τsp1 . Using Proposition 2.1 from [13] we deduce c ≥ s.
Obviously, d ≥ s+ 1.

Since c ≥ s, σε1(m) is a subrepresentation of δ([ν−c, νd])oσε1sp(m−n+n′)
for m ≥ n − s + 1

2
− tε1 . Using Lemma 3.4, enhanced with the results

of the previous section, we obtain rε1(σ) ≤ n− n′ + rε1(σsp).

For m ≥ n− tε2 , σε2(m) is a subrepresentation of δ([ν−c, νd])oσε2sp(m−
n + n′) if Θε2(σsp,m − n + n′) 6= 0. Starting from some k such that
Θε2(σ, k) 6= 0, using Lemma 5.5 and the same inductive procedure as
before, we get rε2(σ) ≤ n− n′ + rε2(σsp) + 1.

If c 6= s, Lemma 5.5 also leads to rε2(σ) ≤ n−n′+rε2(σsp), and since we
have already shown rε1(σsp) + rε2(σsp) = 2n′, the inequality (1) implies
rε(σ) = n− n′ + rε(σsp) for ε ∈ {+,−}.

If c = s, we have rε1(σ) ≤ n − n′ + rε1(σsp) and rε2(σ) ≤ n − n′ +
rε2(σsp) + 1. To shorten notation, write r1 for n− n′ + rε1(σsp). It is a
simple matter to see that σε1(r1) is a subrepresentation of δ([ν−s, νd])o
τsp1 . Note that the representation ν−s o τcusp is irreducible and τsp1
can be written as a subrepresentation of π o τcusp, where π is induced
from the essentially square integrable representations attached to the
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segments not containing twists of 1F× . Therefore, we have the following
embeddings and isomorphisms:

σε1(r1) ↪→ δ([ν−s, νd]) o τsp1

↪→ δ([ν−s+1, νd])× ν−s × π o τcusp
∼= δ([ν−s+1, νd])× π × ν−s o τcusp
∼= νs × δ([ν−s+1, νd])× π o τcusp,

showing RP1(σ
ε1(r1))(ν

s) 6= 0.

If R
fP1

(σ)(νsχV,ψ) = 0, Lemma 3.4 (ii) implies rε1(σ) ≤ r1 − 1. Again,
the inequality (1) gives the first occurrence indices.

If R
fP1

(σ)(νsχV,ψ) 6= 0, then there exists some irreducible genuine repre-

sentation σ′ of ˜Sp(n− 1) such that σ ↪→ νsχV,ψoσ′. Since the represen-
tation σ is square integrable, it is not hard to see that σ′ has to be tem-
pered. If σ′ is not square integrable, then it has to be a subrepresenta-
tion of the induced representation of the form δ([ν−s+1χV,ψ, ν

s−1χV,ψ])o
σ′sp where σ′sp is the strongly positive representation given as the unique
irreducible subrepresentation of δ([νsχV,ψ, ν

dχV,ψ]) o σsp. On the other
hand, if σ′ is a discrete series representation, then it has to be a sub-
representation of δ([ν−s+1χV,ψ, ν

dχV,ψ]) o σsp. In both cases, using the
structure formula, we see at once that if µ∗(σ) contains νsχV,ψ⊗σ′′, for
some irreducible genuine representation σ′′, then σ′′ ∼= σ′. The analo-
gous properties hold for listed embeddings of σ′. Applying Proposition
3.7 and the same inductive procedure as before, we obtain that one of
the following holds:

σε2(n− n′ + rε2(σsp) + 1)) ↪→ νs × δ([ν−s+1, νs−1])× δ([νs, νd]) o σε2sp(r
ε2(σsp) + 1),

σε2(n− n′ + rε2(σsp) + 1)) ↪→ νs × δ([ν−s+1, νd]) o σε2sp(r
ε2(σsp) + 1).

Lemma 3.4 (ii) shows that σε2sp(r
ε2(σsp) + 1) is a subrepresentation of

ν−s−1 oσε2sp(r
ε2(σsp)), and this clearly forces RP1(σ

ε2(n−n′+ rε2(σsp)+
1))(ν−s−1) 6= 0. Applying Lemma 3.4 (ii) one more time, we get
rε2(σ) ≤ n − n′ + rε2(σsp) and the inequality (1) yields the desired
first occurrence indices.

Let us now assume a1 > 0. Then the results obtained in the previous
section (as well as those in the sixth section of the paper [11]) show that
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σε1sp(n
′ − tε1) is the unique irreducible subrepresentation of the induced

representation of the form

ν
1
2 × · · · × νa1−2 × (

k∏
j=1

δ([νaj−1, νbj ])) o τsp1 , (4)

where aj ≤ bj for j = 1, 2, . . . , k, aj−1 = aj − 1, bj−1 < bj for j =
2, 3, . . . , k and τsp1 is a strongly positive discrete series having no twists
of 1F× in the cuspidal support. Proposition 2.1 from [13] gives c ≥
a1 − 1, bj 6= c and bj 6= d for j = 1, 2, . . . , k.

Also, in this case, the strongly positive representation σsp is the unique
irreducible subrepresentation of

(
k∏
j=1

δ([νajχV,ψ, ν
bjχV,ψ])) o σsp1 ,

and there are no twists of χV,ψ1F× appearing in the cuspidal support
of strongly positive discrete series σsp1 .

Lemma 5.6. Assume that (a1, c) 6= (3
2
, 1

2
). If c 6= a1−1, then rε1(σ) =

n − n′ + rε1(σsp) and rε2(σ) = n − n′ + rε2(σsp). Otherwise, rε1(σ) =
n− n′ + rε1(σsp)− 1 and rε2(σ) = n− n′ + rε2(σsp) + 1.

Proof. We comment only the case c = a1 − 1, the other case can be
proved in the same way, but more easily. Note that in this case b1 > d.
In Theorem 4.2 and discussion preceding it, we have proved rε1(σsp) =
n′ − a1 − tε1 + 3

2
and rε2(σsp) = n′ + a1 − 1

2
− tε2 .

For n−a1− tε1 + 5
2
≤ m ≤ n− tε1 , Proposition 3.7 shows that σε1(m) is

a subrepresentation of δ([ν−a1+1, νd]) o σε1sp(m− n+ n′). Using Lemma
3.4 (ii) we obtain

σε1(m) ↪→ δ([ν−a1+1, νd])× ν−(m−n− 1
2
+tε1 ) o σε1sp(m− n+ n′ − 1)

∼= ν−(m−n− 1
2
+tε1 ) × δ([ν−a1+1, νd]) o σε1sp(m− n+ n′ − 1),

where the last isomorphism holds since 0 < −(m−n− 1
2
+tε1) < a1−1 <

d. Using Lemma 3.4 (ii) again, we conclude rε1(σ) ≤ n− a1 − tε1 + 3
2
.
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Using completely analogous arguments, we conclude that Θε2(σ, n +
a1 + 1

2
− tε2) 6= 0 and

σε2(n+ a1 +
1

2
− tε2) ↪→ δ([ν−a1+1, νd])× ν−a1 o σε2sp(n

′ + a1 −
1

2
− tε2).

To obtain the first occurrence indices we use a slight variation of the
method used in [16], Section 10.

Let Jord1F×
= {1

2
, 3

2
, . . . , a1 − 2, a1 − 1, d, b1, b2, . . . , bk}. Further, let

Jord′1F×
= {(x, y) : x ∈ Jord1F×

, y ∈ Jord1F×
, x < y}. For x ∈

Jord1F×
, x > 1

2
, we denote by x− an element of Jord1F×

with the
property that {z ∈ Jord1F×

: x− < z < x} ∩ Jord1F×
= ∅.

Since σε1(n − tε1) is the discrete series representation on whose non-
strongly positive part appear only twists of the trivial representation
1F× , we attach to σε1(n − tε1) a function ε : Jord1F×

∪ Jord′1F×
→

{1,−1} defined in the following way (analogously as in the Mœglin -
Tadić classification):

• Define ε(1
2
) = 1 if RP1(ν

1
2 )(σε1(n − tε1)) 6= 0, and ε(1

2
) = −1

otherwise.

• For x ∈ Jord1F×
, x > 1

2
, let ε(x−, x) = 1 if there is some irre-

ducible representation τ1 such that σε1(n− tε1) is the subrepresen-
tation of the induced representation of the form δ([νx−+1, νx])oτ1.
Further, let ε(x) = ε(x−) · ε(x−, x), for x > 1

2
.

• For x, y ∈ Jord1F×
such that x < y and x 6= y−, let ε(x, y) =

ε(x) · ε(y).

Actually, in the definition given in [12, 13] the ε–function takes values
on the elements of the form 2x+ 1 or of the form (2x+ 1, 2y + 1), for
x, y ∈ Jord1F×

, x 6= y, but we find this modification more appropriate
to our situation.

It is proved in [12] that ε(x, y) = ε(x, z)ε(z, y) holds for all x, y, z ∈
Jord1F×

, x < z < y.

Obviously, ε(a1 − 1, d) = 1. Suppose that ε(a1 − 2, a1 − 1) = 1. Then,
in the same way as in Lemma 5.1 of [13], we get

σε1(n− tε1) ↪→ δ([ν−a1+2, νa1−1]) o τ ′,
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where τ ′ is discrete series. Inspecting the cuspidal support of τ ′ we de-
duce that it is the strongly positive representation which can be written
as the unique irreducible subrepresentation of the induced representa-
tion

ν
1
2 × · · · × νa1−3 × δ([νa1−2, νd])× (

k∏
j=1

δ([νaj−1, νbj ])) o τsp1 .

Observe that RP1(τ
′)(νx) = 0 for −a1 + 2 ≤ x ≤ a1 − 1. Using Propo-

sition 3.8 we obtain an embedding σ ↪→ δ([ν−a1+2χV,ψ, ν
a1−1χV,ψ]) o

τ ′(n − 2a1 + 2). Results obtained in the previous section show that
τ ′(n − 2a1 + 2) is a strongly positive discrete series that can be writ-
ten as a subrepresentation of the induced representation of the form
δ([νa1−1χV,ψ, ν

dχV,ψ])oσ′sp for some strongly positive discrete series σ′sp,
contradicting the minimality of a1. Consequently, ε(a1−2, a1−1) = −1.
This gives ε(a1 − 2, d) = −1.

It follows from [12], Sections 5 and 6, that ε(a1−2, b1) = −1. Therefore,
ε(d, b1) = 1. It is now easy to obtain an embedding

σε1(n− tε1) ↪→ δ([ν−d, νb1 ]) o τ ′′,

where τ ′′ is a strongly positive discrete series given as the unique irre-
ducible subrepresentation of the induced representation

ν
1
2 × · · · × νa1−1 × (

k∏
j=2

δ([νaj−1, νbj ])) o τsp.

Theorem 6.1 from [10] leads to RP1(τ
′′)(νx) = 0 for d ≤ x ≤ b1. Using

Proposition 3.8 and results obtained in the previous section, we deduce
that σ can be written as a subrepresentation of δ([ν−dχV,ψ, ν

b1χV,ψ]) o
σsp2 , where σsp2 ∈ Irr(S̃p(n′′)) is the strongly positive subrepresenta-
tion of

(
k∏
j=2

δ([νajχV,ψ, ν
bjχV,ψ])) o σsp1 .

Since a2 = a1 + 1, it follows that rε2(σ) equals n+ a1 + 1
2
− tε2 , because

otherwise there will be an embedding

σε2(n+ a1 −
1

2
− tε2) ↪→ δ([ν−d, νb1 ]) o σε2sp2(n

′′ + a1 −
1

2
− tε2),
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which is impossible since rε2(σsp2) = n′′ + a1 + 1
2
− tε2 by Theorem 4.2.

On the other hand, from Lemma 2.2 and [10], Theorem 6.1, we conclude
R
fP1

(σ)(νa1−1χV,ψ) = 0.

If k = 1, then τ ′′ is a subrepresentation of the representation of the
form (3). Therefore k ≥ 2. Further,

σε1(n− tε1 − a1 +
3

2
) ↪→ δ([ν−d, νb1 ]) o σε1sp2(n

′′ − tε1 − a1 +
3

2
).

But rε1(σsp2) = n′′ − tε1 − a1 + 1
2
, so, by Corollary 4.4, σε1sp2(n

′′ − tε1 −
a1 + 3

2
) is a subrepresentation of νa1−1 oσε1sp2(n

′′− tε1−a1 + 1
2
). Further,

δ([ν−d, νb1 ])×νa1−1 is isomorphic to νa1−1×δ([ν−d, νb1 ]), since a1−1 < d.
It follows that RP1(σ

ε1(n − tε1 − a1 + 3
2
))(νa1−1) 6= 0. Lemma 3.4 (ii)

yields rε1(σ) ≤ n−tε1−a1+
1
2

and inequality (1) completes the proof.

The following lemma completes the determination of the first occur-
rence indices in this subcase.

Lemma 5.7. Suppose a1 = 3
2

and c = 1
2
. Then either (rε1(σ), rε2(σ)) =

(n− tε1 , n− tε2 + 1) or (rε1(σ), rε2(σ)) = (n− tε1 − 1, n− tε2 + 2) holds.

The second possibility occurs when R
fP1

(σ)(ν
1
2χV,ψ) = 0.

Proof. It is not hard to deduce, in the same way as in the proof of the
previous lemma, that Θε1(σ, n − tε1) 6= 0 and Θε2(σ, n − tε2 + 2) 6= 0.
We note that σsp can be written as an irreducible subrepresentation of

δ([ν
3
2χV,ψ, ν

b1χV,ψ]) × π o σcusp, where the representation π is induced
from essentially square integrable representations attached to the seg-
ments that do not contain the representation ν

3
2χV,ψ.

We examine the following embeddings of σ (note that the representa-

tion ν
1
2χV,ψ o σcusp is irreducible):

σ ↪→ δ([ν−
1
2χV,ψ, ν

dχV,ψ])× δ([ν
3
2χV,ψ, ν

b1χV,ψ])× π o σcusp

↪→ δ([ν
1
2χV,ψ, ν

dχV,ψ])× δ([ν
3
2χV,ψ, ν

b1χV,ψ])× π × ν−
1
2χV,ψ o σcusp

∼= δ([ν
1
2χV,ψ, ν

dχV,ψ])× δ([ν
3
2χV,ψ, ν

b1χV,ψ])× ν
1
2χV,ψ × π o σcusp

→ δ([ν
1
2χV,ψ, ν

dχV,ψ])× ν
1
2χV,ψ × δ([ν

3
2χV,ψ, ν

b1χV,ψ])× π o σcusp.
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If σ is contained in the kernel of the last intertwining operator then
it is a subrepresentation of δ([ν

1
2χV,ψ, ν

b1χV,ψ]) o σ1, for some irre-
ducible genuine representation σ1. In the same way as in Section 5
of [12] and Lemma 5.1 of [13], we obtain that there is a discrete series

σds ∈ Irr(S̃p(n′′)) such that σ is a subrepresentation of the induced
representation of the form δ([ν−dχV,ψ, ν

b1χV,ψ]) o σds. Inspecting the
cuspidal support of σ, we deduce that σds is a strongly positive repre-
sentation and it can be characterized as the unique irreducible subrep-
resentation of π o σcusp.

Using Lemma 2.2 we conclude R
fP1

(σ)(ν
1
2χV,ψ) = 0 and, since rε1(σds) =

n′′ − tε1 − 1,

σε1(n− tε1) ↪→ δ([ν−d, νb1 ])× ν
1
2 o σε1ds(n

′′ − tε1 − 1).

Since b1 > 1
2
, Lemma 3.4 (ii) and the inequality (1) show rε1(σ) =

n− tε1 − 1.

Now we suppose that σ is not contained in the kernel of the above
intertwining operator. In that case R

fP1
(σ)(ν

1
2χV,ψ) 6= 0. Thus, there

is an irreducible genuine representation σ2 of ˜Sp(n− 1) such that σ ↪→
ν

1
2χV,ψ o σ2. We claim that σ2 is square integrable. Otherwise, there

would be an embedding σ2 ↪→ δ([νxχV,ψρ, ν
yχV,ψρ])oσ3, where x+y ≤

0. Consequently, σ would either be a subrepresentation of δ([νxχV,ψρ, ν
yχV,ψρ])×

ν
1
2χV,ψ o σ3 or a subrepresentation of δ([νxχV,ψρ, ν

1
2χV,ψρ]) o σ3, con-

tradicting the square integrability of σ.

Looking at the cuspidal support of σ we conclude that σ2 is strongly
positive; moreover, it is a subrepresentation of δ([ν

1
2χV,ψ, ν

dχV,ψ])oσsp.
Further, if µ∗(σ) contains ν

1
2χV,ψ ⊗ σ′ for some irreducible genuine

representation σ′ of ˜Sp(n− 1), then σ′ ∼= σ2. Since rε2(σ2) < n−tε2 +1,
Proposition 3.7 and Lemma 3.4 (ii) yield

σε2(n− tε2 + 2) ↪→ ν
1
2 × ν−

3
2 o σε22 (n− tε2)

∼= ν−
3
2 × ν

1
2 o σε22 (n− tε2).

Lemma 3.4 (ii) and the inequality (1) now imply rε2(σ) = n− tε2 + 1,
and the lemma is proved.
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2. Suppose that the representation ν
1
2 appears two times in the cuspidal

support of σε1(n−tε1) and the representation ν
1
2χV,ψ appears two times

in the cuspidal support of σ.

In this case, σ is an irreducible subrepresentation of the induced repre-
sentation of the form δ([ν−cχV,ψ, ν

dχV,ψ]) o σsp, where σsp is a strongly
positive representation without any twists of χV,ψ1F× in its cuspidal
support.

Similarly, σε1(n − tε1) is a subrepresentation of the induced represen-
tation of the form δ([ν−c, νd]) o τsp, where τsp is a strongly positive
discrete series such that there are no twists of the representation 1F×
appearing in its cuspidal support. We again denote the partial cus-
pidal support of σε1(n − tε1) by τcusp and note that in this case both

representations ν
1
2χV,ψ o σcusp and ν

1
2 o τcusp reduce.

There are again several cases to discuss.

The following lemma follows directly from the results of the previous
section, together with Proposition 3.7 and Lemma 5.5, the detailed
verification being left to the reader.

Lemma 5.8. If c 6= 1
2
, then rε1(σ) = n− tε1 and rε2(σ) = n− tε2 + 1.

The first exceptional case is discussed in the following lemma.

Lemma 5.9. If c = 1
2

and R
fP1

(σ)(ν
1
2χV,ψ) 6= 0, then rε1(σ) = n − tε1

and rε2(σ) = n− tε2 + 1.

Proof. Using an inductive approach, as before, we obtain Θε1(σ, n −
tε1) 6= 0 and Θε2(σ, n − tε2 + 2) 6= 0. Condition R

fP1
(σ)(ν

1
2χV,ψ) 6= 0

leads to an embedding σ ↪→ ν
1
2χV,ψ o σsp1 , where σsp1 is a strongly

positive representation of ˜Sp(n− 1), which is the unique irreducible
subrepresentation of

δ([ν
1
2χV,ψ, ν

dχV,ψ]) o σsp.

Proposition 3.7 shows

σε2(n− tε2 + 2) ↪→ ν
1
2 o σε2sp1(n− tε2 + 1).
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The last case discussed in Section 4 gives Θε2(σsp1 , n− tε2) 6= 0. Conse-

quently, RP1(σ
ε2
sp1

(n − tε2 + 1))(ν−
3
2 ) 6= 0 and using Lemma 3.4 (ii) we

deduce rε2(σ) ≤ n− tε2 + 1. The inequality (1) proves the lemma.

Observe that we have also proved RP1(σ
ε1(n− tε1))(ν

1
2 ) = 0. Otherwise

it can be seen, similarly as in Proposition 3.7 or as in Remark 5.2 from
[16], that there is an embedding

σε1(n− tε1) ↪→ ν
1
2 o σε1sp1(n− tε1 − 1),

but in the previous section we have seen that rε1(σsp1) equals n−tε1 .

Lemma 5.10. If c = 1
2

and R
fP1

(σ)(ν
1
2χV,ψ) = 0, then rε1(σ) = n −

tε1 − 1 and rε2(σ) = n− tε2 + 2.

Proof. First, in the same way as before we conclude rε1(σ) ≤ n − tε1
and rε2(σ) ≤ n− tε2 + 2.

By [13], or Theorem 2.1 of [15], the induced representation δ([ν−
1
2 , νd])o

τsp has exactly two irreducible subrepresentations, which are both square
integrable. These representations will be denoted by τds1 and τds2 . By
the Mœglin-Tadić classification of discrete series, there exists exactly
one i ∈ {1, 2} such that RP1(τdsi

)(ν
1
2 ) 6= 0.

Since the induced representation δ([ν−
1
2χV,ψ, ν

dχV,ψ]) o σsp also has
exactly two irreducible subrepresentations, observation made in the
proof of the previous lemma and injective correspondence proved in [3]

and recalled in Theorem 3.3 imply RP1(σ
ε1(n− tε1))(ν

1
2 ) 6= 0. Lemma

3.4 (ii) now gives rε1(σ) < n − tε1 and inequality (1) completes the
proof.

3. Suppose that the representation ν
1
2χV,ψ appears three times in the cus-

pidal support of σ.

We again denote the partial cuspidal support of σε1(n − tε1) by τcusp.

Results from the previous section show that the representation ν
1
2 oτcusp

is irreducible.

Under the above assumption, σsp is the unique irreducible subrepre-

sentation of δ([ν
1
2χV,ψ, ν

bχV,ψ]) o σsp1 , where σsp1 is a strongly positive
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representation and ν
1
2χV,ψ does not appear in the cuspidal support of

σsp1 .

Observe that rε1(σsp) = n′ − tε1 and rε2(σsp) = n′ + 1− tε2 .

We start with the lemma which can be proved by repeated application
of Proposition 3.7 and Lemma 3.4, enhanced by Lemma 5.5:

Lemma 5.11. If c 6= 1
2
, then rε1(σ) = n− tε1 and rε2(σ) = n+ 1− tε2.

Remaining case is covered by the following lemma:

Lemma 5.12. If c = 1
2
, then either (rε1(σ), rε2(σ)) = (n− tε1 − 1, n−

tε2 + 2) or (rε1(σ), rε2(σ)) = (n − tε1 , n − tε2 + 1) holds. The second

possibility appears when R
fP1

(σ)(ν
1
2χV,ψ) 6= 0.

Proof. First we recall that rε1(σ) ≤ n− tε1 . Also, in the standard way

one obtains rε2(σ) ≤ n − tε2 + 2. Suppose R
fP1

(σ)(ν
1
2χV,ψ) 6= 0. Then

there is some irreducible genuine representation σds such that σ is a
subrepresentation of ν

1
2χV,ψ o σds. As in the proof of Lemma 5.7, we

deduce that σds is discrete series representation, which is not strongly
positive since it contains ν

1
2χV,ψ two times in its cuspidal support. It is

a simple combinatorial exercise to obtain that σds is a subrepresentation
of δ([ν−dχV,ψ, ν

bχV,ψ]) o σsp1 . Thus, we have

σ ↪→ ν
1
2χV,ψ × δ([ν−dχV,ψ, ν

bχV,ψ]) o σsp1
∼= δ([ν−dχV,ψ, ν

bχV,ψ])× ν
1
2χV,ψ o σsp1 .

Therefore, there is some irreducible genuine representation σsp2 such
that σ ↪→ δ([ν−dχV,ψ, ν

bχV,ψ])oσsp2 . In the same way as in the Section
5 of [12] we see that σsp2 is square integrable. From its cuspidal support
we see that σsp2 has to be strongly positive and it is a subrepresentation
of

ν
1
2χV,ψ o σsp1 . (5)

Note that if µ∗(σ) ≥ δ([ν−dχV,ψ, ν
bχV,ψ]) ⊗ σ′ for some irreducible

genuine representation σ′, then σ′ ∼= σsp2 . In the same manner as
before, using the first occurrence index of σsp2 , we see that there is
some irreducible representation τ ′ of the orthogonal group such that
σε2(n− tε2 + 2) is a subrepresentation of δ([ν−d, νb])× ν−

3
2 o τ ′. Since
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d ≥ 3
2
, δ([ν−d, νb])×ν− 3

2 is isomorphic to ν−
3
2 ×δ([ν−d, νb]) and Lemma

3.4 (ii) shows rε2(σ) ≤ n − tε2 + 1. The inequality (1) yields rε1(σ) =
n− tε1 and rε2(σ) = n− tε2 + 1.

Now suppose that R
fP1

(σ)(ν
1
2χV,ψ) = 0. We note that σε1sp(n

′ − tε1) can
be written as a subrepresentation of the induced representation of the
form δ([ν

3
2 , νb])×πoτcusp, where π is a representation induced from es-

sentially square integrable representations attached to the segments not
containing the representation ν

3
2 . We have the following embeddings

of the representation σε1(n− tε1):

σε1(n− tε1) ↪→ δ([ν−
1
2 , νd])× δ([ν

3
2 , νb]))× π o τcusp

↪→ δ([ν
1
2 , νd])× ν−

1
2 × δ([ν

3
2 , νb]))× π o τcusp

∼= δ([ν
1
2 , νd])× δ([ν

3
2 , νb]))× π × ν−

1
2 o τcusp

∼= δ([ν
1
2 , νd])× δ([ν

3
2 , νb]))× π × ν

1
2 o τcusp

∼= δ([ν
1
2 , νd])× δ([ν

3
2 , νb])× ν

1
2 × π o τcusp

→ δ([ν
1
2 , νd])× ν

1
2 × δ([ν

3
2 , νb])× π o τcusp.

If σε1(n−tε1) is contained in the kernel of the last intertwining operator,
then there is some irreducible representation τ ′ such that σε1(n − tε1)

is subrepresentation of δ([ν
1
2 , νb]) o τ ′. As in [12, 13] we obtain an

embedding
σε1(n− tε1) ↪→ δ([ν−d, νb]) o τsp,

where τsp is a strongly positive representation. Obviously, we may
apply Proposition 3.8 to obtain

σ ↪→ δ([ν−dχV,ψ, ν
bχV,ψ]) o σsp3 ,

where σsp3 is an irreducible subrepresentation of the representation of

the form (5). But, this implies R
fP1

(σ)(ν
1
2χV,ψ) 6= 0, contrary to our

assumption.

Therefore, σε1(n − tε1) is not contained in the kernel of the observed

intertwining operator and, in consequence, RP1(σ
ε1(n − tε1))(ν

1
2 ) 6= 0.

Lemma 3.4 (ii) implies rε1(σ) ≤ n − tε1 − 1 and the inequality (1)
completes the proof.
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Obtained first occurrence indices, together with the results of the previous
section, complete the proof of Proposition 5.4.

We close this section with the corollary that will be used afterwards in
the paper. We use the same notation as in Proposition 5.4.

Corollary 5.13. Suppose that rε1(σ) = n−n′+rε1(σsp)−1. Then σε1(rε1(σ))
is a discrete series subrepresentation of δ([ν−c+1, νd]) o σε1sp(r

ε1(σsp)). Espe-
cially, if c = 1

2
then the first non-zero lift of σ in the ε1-tower is strongly

positive.

Proof. For abbreviation, we denote rε1(σ) by r1. Proposition 5.4 shows ρ =
1F× and c = −(mr1+1 − n − 1). Further, R

fP1
(σ)(νcχV,ψ) = 0 and σε1(r1 +

1) is a subrepresentation of δ([ν−c, νd]) o σε1sp(r
ε1(σsp)). Lemma 3.4 shows

that σε1(r1 + 1) is a subrepresentation of νc o σε1(r1). Frobenius reciprocity
implies RP1(σ

ε1(r1 + 1)) ≥ νc ⊗ σε1(r1) and using the structure formula for
Jacquet modules we obtain that σε1(r1) is a subquotient of δ([ν−c+1, νd]) o
σε1sp(r

ε1(σsp)).
Results obtained in the previous section imply RP1(σ

ε1
sp(r

ε1(σsp)))(ν
x) = 0

for c − 1 ≤ x ≤ d. Let us first assume c > 1
2
. Then we may apply The-

orem 2.1 of [15] to conclude that δ([ν−c+1, νd]) o σε1sp(r
ε1(σsp)) is a repre-

sentation of the length three which has two non-isomorphic discrete series
subrepresentations and a unique irreducible (Langlands) quotient. We de-
note this irreducible quotient by L and note that L is a subrepresentation of
δ([ν−d, νc−1]) o σε1sp(r

ε1(σsp)). If we suppose that σε1(r1) is isomorphic to L,
it follows directly that there is some irreducible representation τ such that
σε1(r1 + 1) is either a subrepresentation of δ([ν−d, νc−1]) o τ or a subrepre-
sentation of δ([ν−d, νc]) o τ . In both cases, using Proposition 3.8 we get an
embedding which contradicts the square integrability of σ. Thus, σε1(r1) is
a discrete series subrepresentation of δ([ν−c+1, νd]) o σε1sp(r

ε1(σsp)).
On the other hand, if c = 1

2
then Theorem 5.1 of [15] shows that δ([ν−c+1, νd])o

σε1sp(r
ε1(σsp)) is a representation of the length two that has a unique irreducible

subrepresentation (which is strongly positive) and a unique irreducible (Lang-
lands) quotient. In the same way as in the previous case we conclude that

σε1(r1) is a discrete series subrepresentation of δ([ν
1
2 , νd]) o σε1sp(r

ε1(σsp)) and
the corollary is proved.
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6 The conservation relation for general dis-

crete series

Through this section we assume that the basic assumption holds. We take
a moment to describe this conjecture more precisely. In fact, we will state
the conjectures which are equivalent to the basic assumption by [13], Lemma
12.1, and seem to be more appropriate in our situation. In [13] this assump-
tion has been discussed only for classical groups but results of Hanzer and
Muić ([5]) extend it to the case of metaplectic groups.

Let ρ be an irreducible self-contragredient cuspidal representation ofGL(nρ, F )
(this defines nρ) and let σ denote an irreducible cuspidal representation of
classical (resp., metaplectic) group. Let s1 denote a real number such that
the induced representation νs1ρ o 1 (resp., νs1χV,ψρ o 1) reduces, where 1
denotes the trivial representation of the trivial group. The results of Shahidi
show that s1 ∈ 1

2
Z. Further, let us denote by s2 a real number such that the

induced representation νs2ρo σ (resp., νs2χV,ψρo σ) reduces. The assump-
tion under which we work in this section states that s2− s1 ∈ Z and νsρo σ
(resp., νsχV,ψρo σ) is irreducible for s ∈ R \ {±s2}.

The following theorem presents a metaplectic version of Mœglin-Tadić
classification of discrete series.

Theorem 6.1. Let σ ∈ Irr(S̃p(n)) denote a discrete series representa-
tion. Then there exist a positive integer k and an ordered k–tuple Sk =
(σ1, σ2, . . . , σk) of discrete series representations with the following proper-
ties:

• σi ∈ Irr(S̃p(ni)), ni < nj for i < j;

• σ1 is a strongly positive discrete series and σk ∼= σ;

• For every i ∈ {2, 3, . . . , k} there exists a self-contragredient cuspidal
representation ρi ∈ Irr(GL(mi, F )) (this defines mi) and half integers
ci, di such that ci ≥ 0 and di − ci is a positive integer, satisfying

σi ↪→ δ([ν−ciχV,ψρi, ν
diχV,ψρi]) o σi−1

and R
ePmi

(σi−1)(ν
xχV,ψρi) = 0 for ci ≤ x ≤ di.;

• If ρi ∼= ρj for 1 < i < j ≤ k then ρi ∼= ρj′ for j′ ∈ {i+1, i+2, . . . , j−1};
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• If ρi ∼= ρi+1 for i ∈ {2, 3, . . . , k − 1}, then ci < ci+1;

• If there is some i ∈ {2, 3, . . . , k} such that ρi ∼= 1F×, then ρ2
∼= 1F×.

Proof. Theorem obviously holds if σ is strongly positive. Thus, in the rest
of the proof we suppose that σ is not strongly positive.

We will denote by ε1 a unique element of the set {+,−} with the property
Θε1(σ, n−tε1) 6= 0. Theorem 3.3 shows that σε1(n−tε1) is also a discrete series
representation and by Theorem 4.5 it is not strongly positive. By the Mœglin-
Tadić classification of discrete series, there exist a positive integer k and a
k–tuple Sk = (τ1, τ2, . . . , τk) of discrete series representations such that τi ∈
Irr(O(V ε1

ni
)) is a discrete series, τ1 is strongly positive, τk ∼= σε1(n−tε1) and for

every i ∈ {2, 3, . . . , k} there is a self-contragredient cuspidal representation
ρi ∈ Irr(GL(mi, F )) and half integers ci, di such that ci ≥ 0 and di − ci is a
positive integer, satisfying

τi ↪→ δ([ν−ciρi, ν
diρi]) o τi−1

and RPmi
(τi−1)(ν

xρi) = 0 for ci ≤ x ≤ di.
Further properties of Mœglin-Tadić classification, described in detail in

[12, 13], enable us to assume that if ρi ∼= ρj for i < j then ρi ∼= ρj′ for
j′ ∈ {i + 1, i + 2, . . . , j − 1} and ci < ci+1 if ρi ∼= ρi+1. Obviously, if there is
some i ∈ {2, 3, . . . , k} such that ρi ∼= 1F× , then we may take ρ2

∼= 1F× .
Note that τk(n + tε1) 6= 0. Further, since −ci ≤ 0, the previously men-

tioned condition on the Jacquet modules of τi and Proposition 3.8 show that
τi(ni+tε1) is a subrepresentation of δ([ν−ciχV,ψρi, ν

diχV,ψρi])oτi−1(ni−1+tε1)
for i ≥ 2, if τi(ni + tε1) 6= 0. Inductively we obtain τi(ni + tε1) 6= 0 for
i ∈ {1, 2, . . . , k}. We define σi = τi(ni + tε1) for i ∈ {1, 2, . . . , k}. By Theo-
rem 4.5, σ1 is strongly positive discrete series.

If ρ2 is not isomorphic to 1F× , using Lemma 2.2 we easily obtainR
ePmi

(σi−1)(ν
xχV,ψρi) =

0 for ci ≤ x ≤ di and i ∈ {1, 2, . . . , k − 1}.
If ρ2

∼= 1F× , using results obtained in Section 4 and Proposition 2.1 of
[13], we see that if there is some half integer x such that R

eP1
(σ1)(ν

xχV,ψ) 6= 0
and RP1(τ1)(ν

x) = 0 then x < c1. Consequently, R
ePmi

(σi−1)(ν
yχV,ψρi) = 0

for ci ≤ y ≤ di and i ∈ {2, 3, . . . , k} and the theorem is proved.

Let σ ∈ Irr(S̃p(n)) denote a discrete series representation which is not
strongly positive.
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An ordered k–tuple Sk = (σ1, σ2, . . . , σk) that can be attached to σ as in
the previous theorem is not unique, and to each such k–tuple we attach a
non-negative real number min1(Sk) in the following way:

• If there are no representations of the form νxχV,ψ1F× , x ∈ R, appearing
in the cuspidal support of σ1, set min1(Sk) = 0.

• If some representation of the form νxχV,ψ1F× , x ∈ R, appears in the
cuspidal support of σ1, let min1(Sk) denote the minimal a1 such that
σ1 can be written as a subrepresentation of the induced representation
of the form δ([νa1χV,ψ, ν

b1χV,ψ]) o σsp, where σsp is a strongly positive
discrete series.

Let min(σ) denote the minimum of all min1(Sk), where Sk runs over
all ordered k–tuples Sk as in Theorem 6.1. We fix an ordered k–tuple
Sk = (σ1, σ2, . . . , σk) satisfying min1(Sk) = min(σ) and again write σi ↪→
δ([ν−ciχV,ψρi, ν

diχV,ψρi]) o σi−1 for i ∈ {2, 3, . . . , k}. It is direct consequence
of Proposition 3.7 and the assumption on numbers ci, di that rε(σ1) ≤ n1− tε
implies rε(σi) ≤ ni − tε for i ∈ {2, 3, . . . , k} (we remind the reader that σ1 is

an irreducible representation of S̃p(n1)).
We denote by k′ the largest integer l, 3 ≤ l ≤ k, such that (ci, ρi) =

(ci−1 + 1, 1F×) and R
fP1

(σi)(ν
ci1F×) = 0 for i = 3, 4, . . . , l. If there is no such

k′ set kar = 0, otherwise set kar = k′ − 2.

In the following proposition we determine the first occurrence indices of
discrete series of metaplectic groups. For abbreviation, we denote min(σ) by
a1.

Proposition 6.2. Let ε1 denote the unique element of the set {+,−} such
that rε1(σ1) ≤ n1 − tε1 and let ε2 ∈ {+,−} different than ε1. We denote by
σcusp the partial cuspidal support of σ. Then the following holds:

1. Suppose that ν
1
2χV,ψ does not appear in [σ1] and νsχV,ψ o σcusp reduces

for s > 0.

• Suppose that a1 = 0. If (c2, ρ) = (s, 1F×) and R
fP1

(σ)(νsχV,ψ) = 0

then rε1(σ) = n−s− 1
2
−kar− tε1 and rε2(σ) = n+s+ 3

2
+kar− tε2.

Otherwise rε1(σ) = n− s+ 1
2
− tε1 and rε2(σ) = n+ s+ 1

2
− tε2.

• Suppose that a1 > 0. If (c2, ρ) = (a1 − 1, 1F×) and a1 >
3
2
, or

(c2, ρ) = (a1 − 1, 1F×) = (1
2
, 1F×) and R

fP1
(σ)(ν

1
2χV,ψ) = 0, then
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rε1(σ) = n− a1 − kar − tε1 + 1
2

and rε2(σ) = n+ a1 + kar − tε2 + 1
2
.

Otherwise rε1(σ) = n− a1 − tε1 + 3
2

and rε2(σ) = n+ a1 − tε2 − 1
2
.

2. Suppose that ν
1
2χV,ψ appears in [σ1]. If (c2, ρ) = (1

2
, 1F×) and R

fP1
(σ)(ν

1
2χV,ψ) =

0 then rε1(σ) = n−tε1−kar−1 and rε2(σ) = n−tε2 +kar+2. Otherwise
rε1(σ) = n− tε1 and rε2(σ) = n− tε2 + 1.

In other words, if rε1(σ2) = n2 − n1 + rε1(σ1) − 1, then rε1(σ) = n −
n2 + rε1(σ2) − kar and rε2(σ) = n − n2 + rε2(σ2) + kar, otherwise rε(σ) =
n− n1 + rε(σ1) for ε ∈ {+,−}.

Proof. We prove this proposition using induction over k. Since σ is not
strongly positive, the basis of induction is the case k = 2, which has been
treated in the previous section. Note that in this case kar = 0. Thus, it
remains to consider the case k ≥ 3.

We also inductively assume that if rε1(σi) = ni − ni−1 + rε1(σi−1) − 1
then σε1i (rε1(σi)) is a discrete series subrepresentation of δ([ν−ci+1, νdi ]) o
σε1i−1(r

ε1(σi−1)). For i = 2, this is exactly the statement of Corollary 5.13.
Assume that the claim of the proposition holds for all numbers less than

i. We prove it for i. Note that it is enough to prove that rε1(σi) = ni −
ni−1 + rε1(σi−1)− 1 and rε2(σi) = ni−ni−1 + rε2(σi−1) + 1 hold if rε1(σi−1) =
ni−1−ni−2 + rε1(σi−2)− 1, (ci, ρ) = (ci−1 + 1, 1F×) and R

fP1
(σi)(ν

ciχV,ψ) = 0,
while rε(σi) = ni − ni−1 + rε(σi−1) for ε ∈ {+,−} holds otherwise.

Let us first assume that rε1(σi−1) ≥ ni−1 − ni−2 + rε1(σi−2) or (ci, ρ) 6=
(ci−1 + 1, 1F×) holds. If ρi ∼= 1F× , it is evident that ci ≥ i − 3

2
holds. Thus,

for ni − ni−1 + rε1(σi−1) < r ≤ ni − tε1 we have σε1i (r) ↪→ δ([ν−ciρi, ν
diρi])×

ν−(r−ni+tε1+ 1
2
) o σε1i (ni−1 − ni + r − 1) ∼= ν−(r−ni+tε1+ 1

2
) × δ([ν−ciρi, ν

diρi]) o
σε1i (ni−1 − ni + r − 1), since either ρi 6= 1F× or 0 < −(r − ni + tε1 + 1

2
) <

ci−1 < di. This also implies R
fP1

(σi)(ν
−(r−ni+tε1+ 1

2
)χV,ψ) = 0. Starting from

σε1i (ni − tε1) 6= 0, we inductively obtain rε1(σi) ≤ ni − ni−1 + rε1(σi−1).
Similarly, using the standard inductive procedure enhanced by Proposi-

tions 3.7 and 5.5, we get rε2(σi) ≤ ni − ni−1 + rε2(σi−1). Note that we are
in the position to use Proposition 5.5 since σε2i−1(r

ε2(σi−1) + 1) is a subrep-
resentation of νx o σε2i−1(r

ε2(σi−1)) for x ≤ −ci − 1 and x = −ci − 1 only
if rε1(σi−1) = ni−1 − ni−2 + rε1(σi−2) − 1. Consequently, the inequality (1)
implies the claim.

In the rest of the proof we assume rε1(σi−1) = ni−1 − ni−2 + rε1(σi−2)− 1
and (ci, ρ) = (ci−1 + 1, 1F×). The assumption on the first occurrence indices

42



of σi−1, together with the inductive assumption, yields cj = cj−1 + 1 for
j ∈ {2, 3, . . . , i − 1}. Using the same inductive procedure for pushing down
the lifts of representation σi as before, we obtain rε1(σi) ≤ ni−ni−1+r

ε1(σi−1)
and rε2(σi) ≤ ni − ni−1 + rε2(σi−1) + 1. Further, we have the following
embeddings:

σε1i (ni − ni−1 + rε1(σi−1)) ↪→ δ([ν−ci , νdi ]) o σε1i−1(r
ε1(σi−1)),

σε2i (ni − ni−1 + rε2(σi−1) + 1) ↪→ δ([ν−ci , νdi ])× ν−ci−1 o σε2i−1(r
ε2(σi−1)).

For simplicity of notation, we let r1 stand for ni − ni−1 + rε1(σi−1).
Assumption on the numbers ci, di shows that RP1(σ

ε1
1 (rε1(σ1)))(ν

ci−1) =
0. In the same way as in the proof of Proposition 3.1 of [15] we deduce
ν−ci o σε11 (rε1(σ1)) ∼= νci o σε11 (rε1(σ1)). Since cj < ci < dj for 2 ≤ j ≤ i− 1,
using the inductive assumption on the first non-zero lifts of representations
σj for 2 ≤ j ≤ i − 1 (in the ε1-tower), we obtain the following embeddings
and isomorphisms:

σε1i (r1) ↪→ δ([ν−ci+1, νdi ])× ν−ci o σε1i−1(r
ε1(σi−1))

↪→ δ([ν−ci+1, νdi ])× ν−ci × δ([ν−ci−1+1, νdi−1 ])× · · · × δ([ν−c2+1, νd2 ]) o σε11 (rε1(σ1))

↪→ δ([ν−ci+1, νdi ])× δ([ν−ci−1+1, νdi−1 ])× · · · × δ([ν−c2+1, νd2 ])× ν−ci o σε11 (rε1(σ1))
∼= δ([ν−ci+1, νdi ])× δ([ν−ci−1+1, νdi−1 ])× · · · × δ([ν−c2+1, νd2 ])× νci o σε11 (rε1(σ1))
∼= νci × δ([ν−ci+1, νdi ])× δ([ν−ci−1+1, νdi−1 ])× · · · × δ([ν−c2+1, νd2 ]) o σε11 (rε1(σ1)).

Thus, RP1(σ
ε1
i (r1))(ν

ci) 6= 0. Consequently, if R
fP1

(σi)(ν
ciχV,ψ) = 0 then

Lemma 3.4 (ii) yields rε1(σi) ≤ ni − ni−1 + rε1(σi−1) − 1 and inequality
(1) ends the investigation of the first occurrence indices in this case. It re-
mains to determine the first non-zero lift of σi in the ε1-tower. First, since
RP1(σ

ε1(rε1(σi) + 1)) contains νci ⊗ σε1(rε1(σi)), standard calculation with
Jacquet modules yields that σε1(rε1(σi)) is a subquotient of δ([ν−ci+1, νdi ]) o
σε1i−1(r

ε1(σi−1)). Using Theorem 2.1 of [15], in the same way as in the proof
of Corollary 5.13 we deduce that σε1(rε1(σi)) is a discrete series subrepresen-
tation of δ([ν−ci+1, νdi ]) o σε1i−1(r

ε1(σi−1)).
It remains to consider the case R

fP1
(σi)(ν

ciχV,ψ) 6= 0. Since ci ≥ 3
2
,

Proposition 3.7 gives RP1(σ
ε1
i (ni − tε1))(ν

ci) 6= 0. Lemma 5.1 of [13] shows
that there is a discrete series τ such that σε1i (ni − tε1) is a subrepresenta-
tion of δ([ν−ci−1 , νci ]) o τ . Further properties of Mœglin-Tadić classification,
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related to the ε-function defined on pairs, show that τ is a subrepresenta-
tion of δ([ν−di , νdi−1 ]) o σε1i−2(ni−2 − tε1). Thus, σε1i (ni − tε1) is a subrepre-
sentation of δ([ν−ci−1 , νci ]) × δ([ν−di , νdi−1 ]) o σε1i−2(ni−2 − tε1). It is a sim-
ple matter to see, using Proposition 3.8, that σi is a subrepresentation of
δ([ν−ci−1χV,ψ, ν

ciχV,ψ])× δ([ν−diχV,ψ, ν
di−1χV,ψ])oσi−2. Going back to lifts of

σi in the ε2-tower we get

σε2i (ni−ni−1 + rε2(σi−1)+1) ↪→ δ([ν−ci−1 , νci ])× δ([ν−di , νdi−1 ])× ν−ci−1 o τ ′,

for some irreducible representation τ ′. Since di ≥ ci + 1 and ci−1 = ci − 1,
δ([ν−ci−1 , νci ])×δ([ν−di , νdi−1 ])×ν−ci−1 is isomorphic to ν−ci−1×δ([ν−ci−1 , νci ])×
δ([ν−di , νdi−1 ]). Consequently, RP1(σ

ε2
i (ni−ni−1 + rε2(σi−1)+1))(ν−ci−1) 6= 0

and Lemma 3.4 (ii) implies rε2(σi) ≤ ni − ni−1 + rε2(σi−1). Using inequality
(1) we get the desired conclusion.

As a direct consequence of Proposition 6.2 and results from the Section
4, we obtain the main result of this paper.

Theorem 6.3. The conservation relation holds for discrete series of meta-
plectic groups.

We also have the following generalization of Corollary 4.4, which is a
direct consequence of Proposition 6.2 and results obtained in the previous
section:

Corollary 6.4. Let σ ∈ Irr(S̃p(n)) denote a discrete series representation.
If k > r(σ), then σ(k) is an irreducible subrepresentation of the induced
representation

νn−mk+1 × νn−mk+2 × · · · × νn−mr(σ) o σ(r(σ)).
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